Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
基本信息
- 批准号:2003712
- 负责人:
- 金额:$ 57.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems and ergodic theory investigate the evolution of physical, biological or mathematical systems in time, such as turbulence in a fluid flow, changing planetary systems or the evolution of diseases. Fundamental ideas and concepts such as information, entropy, chaos and fractals have had a profound impact on our understanding of the world. Dynamical systems and ergodic theory have developed superb tools, and have a strong impact on the sciences and engineering. Symbolic dynamics for example has been instrumental in developing efficient and safe codes for computer science. Tools and ideas from smooth dynamics are used as far afield as cell biology and meteorology. Geometry is a highly developed, ancient yet superbly active field in mathematics. It studies curves, surfaces and their higher dimensional analogues, their shapes, shortest paths, and maps between such spaces. Surveying the land for his principality, Gauss also developed the fundamental notions of geodesics and curvature, laying the groundwork for modern differential geometry. It has close links with physics and applied areas like computer vision. Geometry and dynamics are closely connected. Indeed, important dynamical systems such as the geodesic flow come from geometry, and vice versa one can use geometric tools to study dynamics. One main goal of this project studies symmetries of dynamical systems, especially when one system is unaffected by the changes brought on by the other. The quest is to study these systems via unexpected symmetries. Important examples arise from geometry when the space contains many flat subspaces. Finally group theory gets introduced in both dynamics and geometry via the group of symmetries of a geometry or dynamical situation. The principal investigator will continue training a new generation of researchers and mathematicians, and students at all levels in their mathematical endeavor. This project includes support for research training opportunities for graduate students and summer research experiences for undergraduates.This project will investigate rigidity phenomena in geometry and dynamics, especially actions of higher rank abelian and semi-simple Lie groups and their lattices. The latter is part of the Zimmer program. Particular emphasis will be put on hyperbolic actions of such groups. As higher rank semisimple Lie groups and their lattices contain higher rank abelian groups, the classification and rigidity problems for the abelian and semi-simple cases are closely related, with abundant cross fertilization. The goal is the classification of such actions. Closely related are the study of automorphism groups of geometric structures. Investigations in geometry will address higher rank Riemannian manifolds and their classification, introducing novel methods. The dynamics of geodesic and frame flows will also be studied, with investigations of discrete subgroups of Lie groups for rank rigidity and measure properties. Besides establishing new results, the principal investigator also strives to find and introduce novel methods for investigating these problems which will lend themselves to applications in other areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学系统和厄贡理论会及时研究物理,生物学或数学系统的演变,例如流体流动中的湍流,变化的行星系统或疾病的演变。 信息,熵,混乱和分形等基本思想和概念对我们对世界的理解产生了深远的影响。 动力学系统和偏僻的理论开发了出色的工具,并对科学和工程产生了强烈的影响。 例如,符号动态在开发计算机科学的高效且安全的代码方面发挥了作用。流畅动态的工具和想法与细胞生物学和气象学一样远。 几何形状是一个高度发达,古老而又极具活跃的数学领域。 它研究了此类空间之间的曲线曲线,表面及其更高的类似物,它们的形状,最短路径和地图。高斯对土地的公国进行了调查,还开发了大地测量和曲率的基本观念,为现代差异几何形状奠定了基础。 它与物理和应用领域(如计算机视觉)有着密切的联系。 几何和动力学紧密连接。 实际上,重要的动力系统(例如测量流)来自几何形状,反之亦然,可以使用几何工具来研究动力学。 该项目的一个主要目标研究动态系统的对称性,尤其是当一个系统不受另一个系统的变化影响时。 追求是通过意外的对称性研究这些系统。 当空间包含许多平面子空间时,重要的例子是由几何形状产生的。 最终,小组理论通过几何或动态情况的对称性组在动力学和几何形状中引入。 首席研究人员将继续培训新一代的研究人员和数学家,并在其数学努力中各个级别的学生。 该项目包括支持研究生的研究培训机会以及本科生的夏季研究经验。该项目将研究几何和动态的僵化现象,尤其是高级阿贝利安和半简单的谎言组及其晶格的较高行动。后者是Zimmer计划的一部分。 特别重点将放在此类群体的双曲动作上。 由于较高排名的半圣母谎言组及其晶格包含较高排名的阿贝利亚人群,因此阿贝尔和半简单病例的分类和僵化问题密切相关,并具有丰富的交叉施肥。 目标是对此类行动的分类。 密切相关的是对几何结构的自动形态群体的研究。 几何学的研究将解决较高的riemannian歧管及其分类,并引入新方法。 还将研究测量和框架流动的动力学,并研究了谎言组的离散亚组,以进行等级刚度和测量属性。 除了建立新的结果外,首席研究人员还努力寻找并介绍新的方法来调查这些问题,这些方法将使自己适用于其他领域的应用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响标准的评估来获得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carnot metrics, dynamics and local rigidity
卡诺度量、动力学和局部刚性
- DOI:10.1017/etds.2021.116
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:CONNELL, CHRIS;NGUYEN, THANG;SPATZIER, RALF
- 通讯作者:SPATZIER, RALF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Spatzier其他文献
Ralf Spatzier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Spatzier', 18)}}的其他基金
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
1607260 - 财政年份:2016
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
1307164 - 财政年份:2013
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
1045119 - 财政年份:2011
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
- 批准号:
0920057 - 财政年份:2009
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0906085 - 财政年份:2009
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
0602191 - 财政年份:2006
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0604857 - 财政年份:2006
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
- 批准号:
0536464 - 财政年份:2006
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0203735 - 财政年份:2002
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
- 批准号:
9971556 - 财政年份:1999
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
相似国自然基金
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
- 批准号:62374096
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
氢气/储氢金属粉尘两相体系爆炸动力学特性与机理
- 批准号:52374197
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
布里渊随机光纤激光器模式调控技术及其动力学特性研究
- 批准号:62305311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑路面特性的汽车主动悬架机电阻抗动力学与变阻抗控制研究
- 批准号:52372386
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于锥形光纤的大功率激光器模式动力学特性及其调控研究
- 批准号:62305390
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Kinetic Mechanical Properties of aLb2 Integrin
aLb2 整合素的动力学机械特性
- 批准号:
7570607 - 财政年份:2000
- 资助金额:
$ 57.1万 - 项目类别:
Kinetic Mechanical Properties of aLb2 Integrin
aLb2 整合素的动力学机械特性
- 批准号:
7341709 - 财政年份:2000
- 资助金额:
$ 57.1万 - 项目类别:
Kinetic Mechanical Properties of aLb2 Integrin
aLb2 整合素的动力学机械特性
- 批准号:
7176198 - 财政年份:2000
- 资助金额:
$ 57.1万 - 项目类别:
Rheological and Adherence Properties of Sickle Cells
镰状细胞的流变学和粘附特性
- 批准号:
7628998 - 财政年份:1989
- 资助金额:
$ 57.1万 - 项目类别:
Rheological and Adherence Properties of Sickle Cells
镰状细胞的流变学和粘附特性
- 批准号:
7434446 - 财政年份:1989
- 资助金额:
$ 57.1万 - 项目类别: