Rigidity Properties in Dynamics and Geometry

动力学和几何中的刚性特性

基本信息

项目摘要

Dynamical systems and ergodic theory investigate the evolution of physical, biological or mathematical systems in time, such as turbulence in a fluid flow, changing planetary systems or the evolution of diseases. Fundamental ideas and concepts such as information, entropy, chaos and fractals have had a profound impact on our understanding of the world. Dynamical systems and ergodic theory have developed superb tools, and have a strong impact on the sciences and engineering. Symbolic dynamics for example has been instrumental in developing efficient and safe codes for computer science. Tools and ideas from smooth dynamics are used as far afield as cell biology and meteorology. Geometry is a highly developed, ancient yet superbly active field in mathematics. It studies curves, surfaces and their higher dimensional analogues, their shapes, shortest paths, and maps between such spaces. Surveying the land for his principality, Gauss also developed the fundamental notions of geodesics and curvature, laying the groundwork for modern differential geometry. It has close links with physics and applied areas like computer vision. Geometry and dynamics are closely connected. Indeed, important dynamical systems such as the geodesic flow come from geometry, and vice versa one can use geometric tools to study dynamics. One main goal of this project studies symmetries of dynamical systems, especially when one system is unaffected by the changes brought on by the other. The quest is to study these systems via unexpected symmetries. Important examples arise from geometry when the space contains many flat subspaces. Finally group theory gets introduced in both dynamics and geometry via the group of symmetries of a geometry or dynamical situation. The principal investigator will continue training a new generation of researchers and mathematicians, and students at all levels in their mathematical endeavor. This project includes support for research training opportunities for graduate students and summer research experiences for undergraduates.This project will investigate rigidity phenomena in geometry and dynamics, especially actions of higher rank abelian and semi-simple Lie groups and their lattices. The latter is part of the Zimmer program. Particular emphasis will be put on hyperbolic actions of such groups. As higher rank semisimple Lie groups and their lattices contain higher rank abelian groups, the classification and rigidity problems for the abelian and semi-simple cases are closely related, with abundant cross fertilization. The goal is the classification of such actions. Closely related are the study of automorphism groups of geometric structures. Investigations in geometry will address higher rank Riemannian manifolds and their classification, introducing novel methods. The dynamics of geodesic and frame flows will also be studied, with investigations of discrete subgroups of Lie groups for rank rigidity and measure properties. Besides establishing new results, the principal investigator also strives to find and introduce novel methods for investigating these problems which will lend themselves to applications in other areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统和遍历理论研究物理、生物或数学系统随时间的演化,例如流体流动中的湍流、变化的行星系统或疾病的演化。 信息、熵、混沌和分形等基本思想和概念对我们对世界的理解产生了深远的影响。 动力系统和遍历理论已经开发出精湛的工具,并对科学和工程产生了重大影响。 例如,符号动力学在为计算机科学开发高效且安全的代码方面发挥了重要作用。来自平滑动力学的工具和想法被广泛应用于细胞生物学和气象学领域。 几何是数学中一个高度发展、古老但极其活跃的领域。 它研究曲线、曲面及其高维类似物、它们的形状、最短路径以及这些空间之间的映射。高斯在测量其公国的土地时,还发展了测地线和曲率的基本概念,为现代微分几何奠定了基础。 它与物理学和计算机视觉等应用领域有着密切的联系。 几何学和动力学密切相关。 事实上,重要的动力系统(例如测地线流)来自几何学,反之亦然,人们可以使用几何工具来研究动力学。 该项目的一个主要目标是研究动力系统的对称性,特别是当一个系统不受另一个系统带来的变化影响时。 任务是通过意想不到的对称性来研究这些系统。 当空间包含许多平坦子空间时,几何中就会出现重要的例子。 最后,群论通过几何或动力学情况的对称群被引入动力学和几何中。 首席研究员将继续培训新一代研究人员和数学家以及各级学生的数学事业。 该项目包括为研究生的研究培训机会和本科生的暑期研究经验提供支持。该项目将研究几何和动力学中的刚性现象,特别是高阶交换李群和半单李群及其格的行为。后者是 Zimmer 计划的一部分。 将特别强调此类群体的双曲线行为。 由于高阶半单李群及其格中包含高阶阿贝尔群,因此阿贝尔群和半单例的分类和刚性问题密切相关,具有丰富的交叉受精作用。 目标是对此类操作进行分类。 密切相关的是几何结构自同构群的研究。 几何研究将解决更高阶黎曼流形及其分类,引入新方法。 还将研究测地线和框架流的动力学,研究李群的离散子群的阶刚度和测量属性。 除了取得新成果外,首席研究员还努力寻找和引入研究这些问题的新方法,这些方法将有助于在其他领域的应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carnot metrics, dynamics and local rigidity
卡诺度量、动力学和局部刚性
  • DOI:
    10.1017/etds.2021.116
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    CONNELL, CHRIS;NGUYEN, THANG;SPATZIER, RALF
  • 通讯作者:
    SPATZIER, RALF
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralf Spatzier其他文献

Ralf Spatzier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralf Spatzier', 18)}}的其他基金

Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1307164
  • 财政年份:
    2013
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    1045119
  • 财政年份:
    2011
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
  • 批准号:
    0920057
  • 财政年份:
    2009
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0906085
  • 财政年份:
    2009
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    0602191
  • 财政年份:
    2006
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0604857
  • 财政年份:
    2006
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
  • 批准号:
    0536464
  • 财政年份:
    2006
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0203735
  • 财政年份:
    2002
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
  • 批准号:
    9971556
  • 财政年份:
    1999
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
  • 批准号:
    62374096
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
电驱动系统多场耦合机理与非线性动力学特性解析建模方法
  • 批准号:
    52375105
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
钕铁硼永磁晶界扩散热动力学与界面润湿特性关联机制研究
  • 批准号:
    52371184
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
无基底薄膜受压失稳动力学机制及深度皱曲状态下的波动特性研究
  • 批准号:
    12372099
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
超疏水太阳能板液滴裹挟灰尘动力学特性及清灰调控机制研究
  • 批准号:
    52366016
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Kinetic Mechanical Properties of aLb2 Integrin
aLb2 整合素的动力学机械特性
  • 批准号:
    7570607
  • 财政年份:
    2000
  • 资助金额:
    $ 57.1万
  • 项目类别:
Kinetic Mechanical Properties of aLb2 Integrin
aLb2 整合素的动力学机械特性
  • 批准号:
    7341709
  • 财政年份:
    2000
  • 资助金额:
    $ 57.1万
  • 项目类别:
Kinetic Mechanical Properties of aLb2 Integrin
aLb2 整合素的动力学机械特性
  • 批准号:
    7176198
  • 财政年份:
    2000
  • 资助金额:
    $ 57.1万
  • 项目类别:
Rheological and Adherence Properties of Sickle Cells
镰状细胞的流变学和粘附特性
  • 批准号:
    7628998
  • 财政年份:
    1989
  • 资助金额:
    $ 57.1万
  • 项目类别:
Rheological and Adherence Properties of Sickle Cells
镰状细胞的流变学和粘附特性
  • 批准号:
    7434446
  • 财政年份:
    1989
  • 资助金额:
    $ 57.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了