EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics

EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训

基本信息

项目摘要

This proposal calls to continue our research training program in geometry, topology and dynamics at the University of Michigan. Recent Ph.D.'s and advanced graduate students will be the main beneficiaries. The Mathematics Department at UM has one of the largest and most vigorous post-doctoral and graduate programs in the country, with an excellent record of producing high-quality researchers in geometry, topology and dynamics. We will bolster the training of post-docs and graduate students in these areas by deepening and broadening their education and providing the trainees with ample opportunities to excel in their research. Five senior faculty members (Richard Canary, John Erik Fornaess, Gopal Prasad, Yongbin Ruan and Ralf Spatzier) will lead this project in collaboration with other senior faculty. We introduced various innovations into our current training program, and will continue them and expand on them: We will provide intensive exploratory seminars, lecture series and workshops. All trainees will develop lecturing skills, and will benefit from intensive mentoring. Some trainees will deepen their scientific training by traveling to other institutions at the forefront of research. Finally, we will expose undergraduates to research in the these areas via REU's. We involve postdocs in REU activities, thus training them to supervise research. Geometry, topology and dynamical systems are core areas of mathematics. Geometry investigates the shape of spaces, through invariants such as curvature. Topology explores the properties of spaces which remain invariant under continuous deformations. One basic such invariant, the genus, is the number of "holes" in a surface. Dynamical systems concern the evolution of a physical or mathematical system over time. Especially in recent years, geometry and dynamics have developed in mutually beneficial interaction. Case in point are topology, geometry and complex dynamics in low dimension which in many aspects mirror each other. Many of the most exciting developments in these areas are truly interrelated, and benefit from each other either by idea, analogy or actual tool. At the same time, connections with other fields such as group theory, algebraic geometry and mathematical physics have strengthened dramatically. These developments have been amazing in their breadth and depth, and demonstrate the vitality of these areas.
该建议呼吁继续我们密歇根大学的几何,拓扑和动态研究培训计划。 最近的博士学位和高级研究生将成为主要受益者。 UM的数学部门是该国最大,最有活力的博士后和研究生课程之一,拥有出色的几何学,拓扑,拓扑和动态研究人员的良好记录。 我们将通过加深和扩大他们的教育并为受训者提供足够的研究机会来加强这些领域的后培训和研究生的培训。 五位高级教师(理查德·卡里(Richard Canary),约翰·埃里克·福纳斯(John Erik Fornaess),戈帕尔·普拉萨德(Gopal Prasad),扬宾·鲁恩(Yongbin Ruan)和拉尔夫·斯帕齐耶(Ralf Spatzier))将领导该项目与其他高级教师合作。 我们将各种创新引入了当前的培训计划,并将继续进行研究:我们将提供密集的探索性研讨会,讲座系列和讲习班。 所有学员都将发展讲课技巧,并将受益于密集的指导。 一些学员将通过前往研究最前沿的其他机构来加深他们的科学培训。 最后,我们将通过REU揭露本科生在这些领域的研究。 我们将博士后参与REU活动,从而培训他们以监督研究。几何,拓扑和动态系统是数学的核心领域。几何形状通过曲率等不变性研究了空间的形状。 拓扑探讨了在连续变形下保持不变的空间的性质。 这样一个不变的基本不变属是表面中的“孔”数量。 动态系统涉及物理或数学系统的演变。 尤其是近年来,几何和动力学在互惠互动中发展了。 在低维中,拓扑,几何形状和复杂动力学中有一个很好的例子,这些动态在许多方面相互反映。 这些领域中许多最激动人心的发展都是真正相互关联的,并且通过想法,类比或实际工具彼此受益。 同时,与其他领域(例如群体理论,代数几何形状和数学物理学)的联系已显着加强。 这些发展的广度和深度令人惊讶,并证明了这些领域的活力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralf Spatzier其他文献

Ralf Spatzier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralf Spatzier', 18)}}的其他基金

Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
  • 批准号:
    2003712
  • 财政年份:
    2020
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1307164
  • 财政年份:
    2013
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
  • 批准号:
    0920057
  • 财政年份:
    2009
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0906085
  • 财政年份:
    2009
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    0602191
  • 财政年份:
    2006
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0604857
  • 财政年份:
    2006
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
  • 批准号:
    0536464
  • 财政年份:
    2006
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0203735
  • 财政年份:
    2002
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
  • 批准号:
    9971556
  • 财政年份:
    1999
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant

相似海外基金

EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
  • 批准号:
    0943745
  • 财政年份:
    2010
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Enhanced Training and Recruitment in Mathematical Biology
EMSW21-RTG:数学生物学加强培训和招聘
  • 批准号:
    0943760
  • 财政年份:
    2010
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Research Training Group in Logic and Dynamics
EMSW21-RTG:逻辑和动力学研究培训组
  • 批准号:
    0943870
  • 财政年份:
    2010
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Research Training Group on Inverse Problems and Partial Differential Equations
EMSW21-RTG:反问题和偏微分方程研究培训组
  • 批准号:
    0838212
  • 财政年份:
    2009
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training, Mentoring & Research in the Mathematics of Stochastic Analysis and Applications
EMSW21-RTG:培训、指导
  • 批准号:
    0739195
  • 财政年份:
    2008
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了