Collaborative Research: An Experimental and Modeling Study of Inverse-Temperature Layer and Its Effect on Evaporation over Water Surfaces

合作研究:逆温层及其对水面蒸发影响的实验和模型研究

基本信息

  • 批准号:
    2003076
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Evaporation is a uniquely important process in the Earth System linking water, energy, and carbon cycles. Monitoring and modeling evaporation over water surfaces such as lakes and oceans remains challenging. Better quantification and modeling of water evaporation requires improved understanding of the physical processes across the water-atmosphere interface. An outstanding scientific question is the role of the top water layer where temperature increases with depth, known as the inverse-temperature layer, in evaporation. An interdisciplinary team of hydro-meteorologists and fluid mechanics scientists will use cutting-edge field and numerical experiment technology and various modeling tools to address this question. The outcomes from this project will benefit broad fields of the Earth Sciences, especially the study of water-energy-carbon cycles. This project will train graduate students to gain all-around research experience. The three participating universities will offer mini projects, seminar series, and summer training courses for high school and college students with diverse ethnic backgrounds pursuing science and engineering education.The project objective is to understand the physical mechanisms underlying the dynamics of the inverse-temperature layer on the top of water-bodies and its effect on evaporation over water surfaces at diurnal and seasonal scales through field experiments, large-eddy simulations, and theoretical and modeling analysis. The project will use a state-of-the-science facility over an in-land lake to measure high-resolution water temperature profiles, above- and in-water fluxes of momentum/heat/water mass and hydro-meteorological variables to reveal the behavior of the inverse temperature layer. The project team will conduct large-eddy simulations to understand the mechanistic links between atmospheric processes and in-water fluid dynamics/thermodynamics regulating the inverse temperature layer and evaporation. The team will also use field and simulation data to evaluate the performance of classical and recently developed parameterizations of evaporation in coupled land-ocean-atmosphere models. The findings will be disseminated to scientific communities through journal papers and conference presentations to promote more collaborative research on both long-lasting topics of geosciences and critical emerging issues such as carbon emissions from global inland waters and associated aquatic eco-systems. The proposed work includes engagement of PhD students in research, integration of research findings into undergraduate and graduate courses taught by the PIs, and K-12 outreach.This project is co-funded by the Hydrologic Sciences and Physical and Dynamic Meteorology programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蒸发是将水,能量和碳周期连接的地球系统中一个独特的重要过程。湖泊和海洋等水面上的监测和建模蒸发仍然具有挑战性。更好地定量和建模水蒸发需要提高对整个大气界面的物理过程的了解。一个杰出的科学问题是顶部水层的作用,其中温度随深度(称为反温度层)在蒸发中的作用。水电学家和流体力学科学家的跨学科团队将使用尖端领域和数值实验技术以及各种建模工具来解决这个问题。该项目的结果将使地球科学的广阔领域受益,尤其是对水能碳循环的研究。该项目将培训研究生以获得全方位的研究经验。这三个参与的大学将为具有多种种族背景的高中和大学生提供迷你项目,研讨会系列和夏季培训课程,追求科学和工程教育。项目目标是了解逆变层的物理机制,在水上及其对水上的潮流及其对潮流的蒸发效果的影响,通过潮流及其对季节的蒸发效果,建模分析。该项目将在陆上湖上使用最先进的设施,以测量动量/热量/水质量和水电学变量的高分辨率水温剖面,以揭示反向温度层的行为。项目团队将进行大型模拟,以了解大气过程与水中流体动力学/热力学之间的机械联系,从而调节逆温度层和蒸发。该团队还将使用现场和仿真数据来评估耦合的陆地大气模型中经典和最近开发的蒸发参数的性能。这些发现将通过期刊论文和会议演讲将科学社区传播到科学社区,以促进有关地球科学的长期主题和关键新兴问题的更合作研究,例如全球内部水域和相关的水生生态系统的碳排放。拟议的工作包括将博士生参与研究,将研究结果的整合到本科和研究生课程中,以及K-112宣传。该项目由水文科学以及身体和动态的气象学计划共同资助。这项奖项反映了NSF的法定任务,并通过评估了范围的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lian Shen其他文献

Numerical investigation of ventilated cavitating flow in the wake of a circular cylinder
圆柱尾流通风空化流的数值研究
  • DOI:
    10.1103/physrevfluids.6.064303
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhiying Wang;Han Liu;Qiang Gao;Zhan Wang;Yiwei Wang;Guoyu Wang;Lian Shen
  • 通讯作者:
    Lian Shen
Numerical Study on the Generation and Transport of Spume Droplets in Wind over Breaking Waves
破碎波风中泡沫液滴产生与传输的数值研究
  • DOI:
    10.3390/atmos8120248
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Shuai Tang;Zixuan Yang;Caixi Liu;Yu-Hong Dong;Lian Shen
  • 通讯作者:
    Lian Shen
Investigation on the air-core vortex in a vertical hydraulic intake system
立式液压进气系统空芯涡流研究
  • DOI:
    10.1016/j.renene.2021.06.062
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Dan Zi;Fujun Wang;Chaoyue Wang;Congbin Huang;Lian Shen
  • 通讯作者:
    Lian Shen
Simulation-based study of wind—wave interactions under various sea conditions
不同海况下风浪相互作用的模拟研究
  • DOI:
    10.1007/s42241-019-0088-z
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    X. Hao;Tianyi Li;T. Cao;Lian Shen
  • 通讯作者:
    Lian Shen
An End-to-End Chinese Accent Classification Method
一种端到端的汉语口音分类方法

Lian Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lian Shen', 18)}}的其他基金

Collaborative Research: Experimental and Numerical Studies of the Effects of Wind, Wave Scale, and Salinity on Bubble Entrainment by Breaking Waves
合作研究:风、波浪尺度和盐度对破碎波夹带气泡影响的实验和数值研究
  • 批准号:
    2220898
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Bridging the Gap Between Particle-Scale Thermal - - Transport and Device-scale Predictions
合作研究:弥合粒子尺度热传输和设备尺度预测之间的差距
  • 批准号:
    1903564
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of Droplet Generation by Breaking Wind Waves, Experiments and Numerical Simulations
合作研究:破碎风浪产生液滴的机制、实验和数值模拟
  • 批准号:
    1924799
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Study of The Fundamental Dynamics of Water Wave Effects on Turbulence for Environmental Applications
环境应用中水波对湍流影响的基本动力学研究
  • 批准号:
    1605080
  • 财政年份:
    2016
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Direct Phase-Resolved Simulation of Wind-Waves
风波的直接相位解析模拟
  • 批准号:
    1341063
  • 财政年份:
    2013
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Computation of marine atmospheric boundary layer and nonlinear ocean wavefield for energy for sustainability
计算海洋大气边界层和非线性海洋波场以实现可持续能源
  • 批准号:
    1341062
  • 财政年份:
    2013
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Direct Phase-Resolved Simulation of Wind-Waves
风波的直接相位解析模拟
  • 批准号:
    1155638
  • 财政年份:
    2012
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Computation of marine atmospheric boundary layer and nonlinear ocean wavefield for energy for sustainability
计算海洋大气边界层和非线性海洋波场以实现可持续能源
  • 批准号:
    1133700
  • 财政年份:
    2011
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant

相似国自然基金

多机械臂协作系统动力学层级解析建模与协调柔顺控制理论及实验研究
  • 批准号:
    52175083
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于社会偏好和有限理性的团队协作激励理论及实验研究
  • 批准号:
    72073057
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
受生物启发的多水下机器人环境自适应集群协作控制方法及实验研究
  • 批准号:
    61973007
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
数据驱动的复杂供应链网络多主体协作的计算实验及决策优化方法研究
  • 批准号:
    71771195
  • 批准年份:
    2017
  • 资助金额:
    47.0 万元
  • 项目类别:
    面上项目
网络组织结构、治理机制对协作创新的影响研究
  • 批准号:
    70972085
  • 批准年份:
    2009
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
  • 批准号:
    2240418
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了