Direct Phase-Resolved Simulation of Wind-Waves

风波的直接相位解析模拟

基本信息

  • 批准号:
    1341063
  • 负责人:
  • 金额:
    $ 19.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-03-18 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

Intellectual merit: The wind-wave problem is a classic subject in physical oceanography and fluid mechanics with many important applications. The objective of this study is to develop a wave-phase-resolved numerical capability for the simulation of wind-waves under moderate sea conditions, to investigate the interaction between the wind and waves, to effectively capture the effect of wave breaking dissipation in the wave simulation, and to perform simulation-based study of the dynamic evolution of wind-waves. The study aims at establishing a framework for physics-based fine-resolution simulation of wind-waves that can be used by theoretical, numerical, and experimental studies for model development and cross comparison.The simulation builds on a suite of advanced numerical methods including a high-order spectral method (HOSM) for nonlinear waves, large-eddy simulation (LES) with advanced subgrid-scale (SGS) models for wind turbulence on boundary-fitted grid that follows the wave motion, and, as an auxiliary tool, a hybrid multi-fluid simulation (HMFS) method for steep and breaking waves. The wind simulation will be dynamically coupled with the wave simulation with two-way interactions. From the HOSM simulation, the wave field will provide a realistic bottom boundary condition for the wind LES. Using a new dynamic SGS sea-surface roughness model, the effect of short gravity waves on the wind will be modeled without ad hoc tuning of the model coefficient. In return, the wind LES will provide wind forcing for the HOSM simulation of the waves. Using wave breaking models, which will be assessed and calibrated with the auxiliary HMFS of steep and breaking waves, wave breaking dissipation will also be taken into account in the HOSM. As such, the processes of wind input, nonlinear wave interaction, and wave breaking dissipation will all be incorporated to the phase-resolved simulation of the wave field for the first time. Systematic tests and extensive comparisons with other studies are planned in the proposed project.Some of the proposed computations, such as the wind LES over dynamically-evolving nonlinear wave field with dynamic SGS sea-surface roughness modeling, the phase-resolved simulation of nonlinear wave field with direct wind input and modeling of wave breaking dissipation, and the simulation of steep and breaking wind-waves, are the first of their kind. This study will produce detailed data of the interacting wind and wave fields in a wave-phase-resolved context, which can shed new light on the long- standing problem of wind-wave dynamics. The results of the proposed research will be useful for the comparison with experiment measurement and theoretical analysis. The simulation data will also be helpful for the development of improved models for large-scale wave-phase-averaged simulations.Broader impacts: The topic of this study is of interest to the scientific community as well as the general public. The proposed study will lead to improved simulation capability and understanding of wind-waves, which are essential to many applications including weather and climate change, operation and safety of ships and offshore structures, renewable energy, and pollutant transport. In the project, doctoral graduate education will stress multi-disciplinary training with a focus on computation of wave and turbulence problems. Graduate student recruiting and mentoring will leverage an NSF IGERT project on modeling complex systems awarded to JHU. The IGERT project places emphasis on training in high-performance computation of multi-scale multi-physics problems for domestic doctoral students, especially under-represented minorities, women, and first-generation students. Educational outreach will be facilitated by the Center for Educational Outreach at JHU, through which the PI will work with local Baltimore high schools to expose high school students, especially those from underserved communities, to university research and to inspire them to pursue higher education and careers in science and engineering.
智力优点:风波问题是具有许多重要应用的物理海洋学和流体力学中的经典主题。这项研究的目的是开发波相分辨的数值能力,以在中等海洋条件下模拟风波,研究风与波之间的相互作用,以有效地捕获波浪仿真中波浪破裂耗散的影响,并对基于模拟的风波动力学进化进行基于模拟的研究。该研究旨在建立一个基于物理学的风波的精细分辨率模拟框架,该框架可以通过理论,数值和实验研究用于模型开发和交叉比较。该模拟建立在一套高级数值方法的套件上遵循波动运动的边界拟合网格,作为辅助工具,用于陡峭和破裂波的混合多流体模拟(HMFS)方法。风模拟将与波动模拟与双向相互作用动态耦合。从HOSM模拟中,波场将为风LE提供现实的底部边界条件。使用新的动态SGS海面粗糙度模型,短重力波对风的影响将在不临时调整模型系数的情况下进行建模。作为回报,风LES将为波浪模拟提供强力。使用波浪破裂模型,将通过陡峭和断裂波的辅助HMF进行评估和校准,在HOSM中还将考虑波浪破裂耗散。因此,首次将风输入,非线性波相互作用和波浪破坏耗散的过程首次纳入波场的相分辨模拟。 Systematic tests and extensive comparisons with other studies are planned in the proposed project.Some of the proposed computations, such as the wind LES over dynamically-evolving nonlinear wave field with dynamic SGS sea-surface roughness modeling, the phase-resolved simulation of nonlinear wave field with direct wind input and modeling of wave breaking dissipation, and the simulation of steep and breaking wind-waves, are the first of their kind.这项研究将在波相分辨的环境中产生相互作用的风和波场的详细数据,这可以使人们对风波动力学的长期存在问题发明新的启示。拟议研究的结果将有助于与实验测量和理论分析进行比较。模拟数据还将有助于开发改进的大规模波相平均模拟模型。Boader的影响:这项研究的主题对科学界和公众都感兴趣。拟议的研究将导致改进的模拟能力和对风波的理解,这对于许多应用至关重要,包括天气和气候变化,船舶和近海结构的操作和安全性,可再生能源以及污染物的运输。在该项目中,博士研究生教育将强调多学科培训,重点是计算波浪和湍流问题。研究生招聘和指导将利用NSF IGERT项目来建模授予JHU的复杂系统。 Igert项目重点是为国内博士学生,尤其是代表性不足的少数群体,妇女和第一代学生培训多规模多物理问题的高性能计算培训。 JHU的教育外展中心将促进教育外展活动,PI将与当地的巴尔的摩高中合作,以揭露高中生,尤其是来自服务不足的社区的学生,向大学研究,并激发他们从事科学和工程领域的高等教育和职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lian Shen其他文献

Numerical investigation of ventilated cavitating flow in the wake of a circular cylinder
圆柱尾流通风空化流的数值研究
  • DOI:
    10.1103/physrevfluids.6.064303
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhiying Wang;Han Liu;Qiang Gao;Zhan Wang;Yiwei Wang;Guoyu Wang;Lian Shen
  • 通讯作者:
    Lian Shen
Numerical Study on the Generation and Transport of Spume Droplets in Wind over Breaking Waves
破碎波风中泡沫液滴产生与传输的数值研究
  • DOI:
    10.3390/atmos8120248
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Shuai Tang;Zixuan Yang;Caixi Liu;Yu-Hong Dong;Lian Shen
  • 通讯作者:
    Lian Shen
Investigation on the air-core vortex in a vertical hydraulic intake system
立式液压进气系统空芯涡流研究
  • DOI:
    10.1016/j.renene.2021.06.062
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Dan Zi;Fujun Wang;Chaoyue Wang;Congbin Huang;Lian Shen
  • 通讯作者:
    Lian Shen
Simulation-based study of wind—wave interactions under various sea conditions
不同海况下风浪相互作用的模拟研究
  • DOI:
    10.1007/s42241-019-0088-z
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    X. Hao;Tianyi Li;T. Cao;Lian Shen
  • 通讯作者:
    Lian Shen
An End-to-End Chinese Accent Classification Method
一种端到端的汉语口音分类方法

Lian Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lian Shen', 18)}}的其他基金

Collaborative Research: Experimental and Numerical Studies of the Effects of Wind, Wave Scale, and Salinity on Bubble Entrainment by Breaking Waves
合作研究:风、波浪尺度和盐度对破碎波夹带气泡影响的实验和数值研究
  • 批准号:
    2220898
  • 财政年份:
    2022
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Collaborative Research: An Experimental and Modeling Study of Inverse-Temperature Layer and Its Effect on Evaporation over Water Surfaces
合作研究:逆温层及其对水面蒸发影响的实验和模型研究
  • 批准号:
    2003076
  • 财政年份:
    2020
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Bridging the Gap Between Particle-Scale Thermal - - Transport and Device-scale Predictions
合作研究:弥合粒子尺度热传输和设备尺度预测之间的差距
  • 批准号:
    1903564
  • 财政年份:
    2019
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of Droplet Generation by Breaking Wind Waves, Experiments and Numerical Simulations
合作研究:破碎风浪产生液滴的机制、实验和数值模拟
  • 批准号:
    1924799
  • 财政年份:
    2019
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Study of The Fundamental Dynamics of Water Wave Effects on Turbulence for Environmental Applications
环境应用中水波对湍流影响的基本动力学研究
  • 批准号:
    1605080
  • 财政年份:
    2016
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Computation of marine atmospheric boundary layer and nonlinear ocean wavefield for energy for sustainability
计算海洋大气边界层和非线性海洋波场以实现可持续能源
  • 批准号:
    1341062
  • 财政年份:
    2013
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Direct Phase-Resolved Simulation of Wind-Waves
风波的直接相位解析模拟
  • 批准号:
    1155638
  • 财政年份:
    2012
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Computation of marine atmospheric boundary layer and nonlinear ocean wavefield for energy for sustainability
计算海洋大气边界层和非线性海洋波场以实现可持续能源
  • 批准号:
    1133700
  • 财政年份:
    2011
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant

相似国自然基金

高层钢结构建模-优化-深化的跨阶段智能设计方法
  • 批准号:
    52308142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
  • 批准号:
    32303043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
  • 批准号:
    32371612
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
  • 批准号:
    52307091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Direct whole-genome haplotype-resolved assembly using sequence graphs
使用序列图直接进行全基因组单倍型解析组装
  • 批准号:
    10015321
  • 财政年份:
    2019
  • 资助金额:
    $ 19.52万
  • 项目类别:
Direct observation of phase transition dynamics of water with ultrafast time-resolved electron diffraction
利用超快时间分辨电子衍射直接观察水的相变动力学
  • 批准号:
    17K17893
  • 财政年份:
    2017
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Direct Phase-Resolved Simulation of Wind-Waves
风波的直接相位解析模拟
  • 批准号:
    1155638
  • 财政年份:
    2012
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
Direct sampling time resolved detector
直接采样时间分辨探测器
  • 批准号:
    7404366
  • 财政年份:
    2008
  • 资助金额:
    $ 19.52万
  • 项目类别:
SBIR Phase I: Direct Fluorescence Analysis by Low Temperature Time-Resolved Excitation Emission Matrices
SBIR 第一阶段:通过低温时间分辨激发发射矩阵进行直接荧光分析
  • 批准号:
    9960722
  • 财政年份:
    2000
  • 资助金额:
    $ 19.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了