NSF Center for Sustainable Nanotechnology
NSF 可持续纳米技术中心
基本信息
- 批准号:2001611
- 负责人:
- 金额:$ 2000万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The NSF Center for Sustainable Nanotechnology (CSN) seeks to understand how nanoparticles, particles that are at least 10,000 times smaller than the width of a human hair, transform and interact in and with water and biological systems. Nanoparticles can vary in elemental composition, structure, and properties, which makes them useful for industries ranging from electronics, to batteries, to cosmetics. As nanoparticle use becomes more widespread, however, they are appearing in the environment. When nanoparticles are incorporated into biological systems they may induce unusual behavior that is beneficial or harmful, but is as of yet poorly understood. For instance, due to their small size, some nanoparticles can easily pass through some cell membranes. With very high surface area to volume ratios, nanoparticles can also be highly reactive, which may trigger chemical changes in the environment or to the nanoparticle itself. The CSN applies a "make, measure, model" strategy to develop new functional nanomaterials with increased sustainability and reduced biological impact. Expertise with synthetic methods, in situ analytical techniques, and computational methods is leveraged to understand, predict, and control nanoparticle properties and their chemical interactions with the environment and biological systems. The CSN addresses key knowledge gaps in the areas of nanoparticle properties which will result in better prediction of specific nanoparticle chemical properties and their biological interactions. This will ultimately serve the national interest by allowing for the design of more effective and more benign nanoparticles for many applications. Some of the systems the CSN investigates include: transition metal oxides and phosphates and two-dimensional quantum materials; gold, diamond and silicon based nanoparticles with defined organic and inorganic surface coatings; and as well as emerging nanoparticle compositions that exhibit fundamental new science and utility, such as those based on polymeric carbon dots, and nanovacancies in nanodiamond. This integrated, multi-institutional, and collaborative team involves researchers from the University of Wisconsin-Madison, University of Minnesota, Boston University, Georgia Institute of Technology, Johns Hopkins University, Augsburg University, University of California-Riverside, University of Wisconsin-Milwaukee, University of Iowa, University of Illinois at Urbana-Champaign, University of Maryland Baltimore County, Pacific Northwest National Laboratory, and the Connecticut Agricultural Experimental Station. The Center has a strong innovation component that involves the translation of research results into intellectual property, as well as other collaborations with several industrial partners. The CSN has an inclusive and transparent management approach that enables a positive Center climate and facilitates the integration of student learning across Center activities. Students broaden and deepen their technical expertise and grant writing through student laboratory exchanges and seed grant opportunities. The CSN places special emphasis on communication training. Example mechanisms to develop student communication skills are the popular Sustainable Nano Blog, http://sustainable-nano.com/, and the Spanish language-based Nano Sostenible Blog, http://nano-sostenible.com/. These are key components of the Center's informal science communication efforts, and students have ample opportunity to participate in these educational websites. Webinars on fostering technical innovation, internship opportunities, and opportunities to serve on the advisory board are mechanisms through which students further develop their professional skill sets. The CSN is committed to broadening participation efforts and incorporates summer research experiences for undergraduates and veterans, and relationships with minority-serving institutions, primarily undergraduate institutions, and community colleges as ways to address inclusivity. The strong focus on the CSN climate helps to ensure all participants feel welcomed, valued, and supported. Partnerships with the University of Puerto Rico at Cayey and Rio Piedras, the University of Texas Rio Grand Valley, Tuskegee University, and Georgia State University help to ensure that a diverse group of students can participate in the CSN where they develop not only the skills mentioned above, but also an understanding of the need to approach questions in chemistry with an awareness of sustainability, inclusivity, and interdisciplinarity. The CSN experience will prepare participants to make unique future contributions as members of the chemical workforce. The CSN organizes their goals along four focus areas. One area focuses on establishing nanoparticle structure–function relationships. Chemical composition, size, shape, and organic or inorganic surface modifications are investigated with a combination of computational and experimental approaches. Transition metal oxides, nanoparticles comprised of earth-abundant elements, and nanoparticles that demonstrate novel properties or new utility are focal points. A second area of investigation centers on understanding nanoparticle transformations that occur in the environment and in biological media. Chemical changes in the nanoparticle core, the roles of inorganic and organic ions to impact nanoparticle stability, and surface structure are some of the areas explored. The third CSN thrust area explores nanoparticle coatings, referred to as coronas, formed by their exposure to the environment or biological systems at aqueous interfaces as a function of time. Analytical and computational approaches are developed to characterize and model the chemical nature and formation mechanisms of nanoparticle coronas. The fourth area is a chemistry-focused investigation of the physicochemical properties of nanoparticles and their interactions with biological systems. Nanoparticles with well-defined composition, structure, and surface chemistry are used to correlate, better understand, and predict nanoparticle physicochemical properties, spatial and temporal interactions at biological surfaces, and the direct or indirect effects on molecular interactions in cells and organisms. The CSN enriches the chemistry community by providing new tools for characterizing chemical processes at nanoparticle surfaces and by developing experimentally validated computational methods to predict the molecular-level behavior of complex materials in aqueous media. CSN participants are engaged in activities aimed at facilitating the creation and dissemination of knowledge, enhancing innovation and translation of research products and outcomes to the commercial sector, and providing unique education and training opportunities for students and postdoctoral researchers from diverse backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF可持续纳米技术中心(CSN)试图了解纳米颗粒的纳米颗粒,其颗粒的至少比人毛的宽度小10,000倍,在水和生物系统中转化和相互作用。纳米颗粒的元素组成,结构和特性可能会有所不同,这使得它们对于从电子,电池到化妆品的行业有用。但是,随着纳米颗粒的使用变得越来越宽,它们出现在环境中。当将纳米颗粒纳入生物系统中时,它们可能会引起异常行为,而这种行为是有益或有害的,但却尚未理解。例如,由于其尺寸很小,一些纳米颗粒可以轻松地通过一些细胞膜。由于表面积非常高的体积比,纳米颗粒也可以具有高反应性,这可能会触发环境或纳米颗粒本身的化学变化。 CSN采用“制造,测量,模型”策略来开发可持续性增加并减少生物学影响的新功能纳米材料。合成方法,原位分析技术和计算方法的专业知识被利用以理解,预测和控制纳米粒子的性质及其与环境和生物系统的化学相互作用。 CSN解决了纳米颗粒特性区域中的关键知识差距,这将更好地预测特定的纳米粒子化学性质及其生物相互作用。最终将通过为许多应用设计更有效,更良性的纳米颗粒来满足国家利益。 CSN研究的一些系统包括:过渡金属氧化物和磷酸盐以及二维量子材料;金,钻石和硅的纳米颗粒,具有定义的有机和无机表面涂层;以及新兴的纳米颗粒组成,展示了基本科学和实用性的基础,例如基于聚合物碳点的纳米粒子和纳米座中的纳米变量。这个综合,多机构和合作团队涉及威斯康星大学 - 麦迪逊分校,明尼苏达大学,波士顿大学,波士顿大学,乔治亚大学,约翰·霍普金斯大学,奥格斯堡大学,奥格斯堡大学,加利福尼亚大学,加利福尼亚大学,威斯康星大学,威斯康星大学,威斯康星大学,威斯康星大学,威斯康星大学,伊利诺伊州大学,伊利诺伊州大学,URBAANA,URBAANGANAND,URBAANDANANGANAS,URBBALAMP,URBBALAMP,URBBALAMP,URBBAMPS,URBBAMPS,URBBAMP太平洋西北国家实验室和康涅狄格州农业实验站。该中心具有强大的创新组成部分,涉及将研究结果转化为知识产权,以及与几个工业伙伴的其他合作。 CSN采用包容性和透明的管理方法,使中心气候积极,并促进了跨中心活动的学生学习的整合。学生通过学生实验室交流和种子赠款机会扩大和加深了他们的技术专长,并赠款。 CSN特别强调沟通培训。发展学生沟通技巧的示例机制是流行的可持续纳米博客,http://sustainable-nano.com/和基于西班牙语的Nano Sostenible博客,http://nano-sostenible.com/。这些是该中心非正式科学沟通工作的关键组成部分,学生有足够的机会参加这些教育网站。有关培养技术创新,实习机会和在顾问委员会服务的机会的网络研讨会是学生进一步发展其专业技能的机制。 CSN致力于扩大参与工作,并纳入了本科生和退伍军人的夏季研究经验,以及与少数派服务机构,小学本科机构和社区学院的关系,以解决包容性的方法。对CSN气候的强烈关注有助于确保所有参与者都受到欢迎,重视和支持。与波多黎各大学的卡耶大学和里奥·皮埃拉斯,德克萨斯大学里奥·格兰德山谷,塔斯基吉大学和佐治亚州立大学的合作伙伴关系有助于确保一群潜水员的学生可以参与CSN参与CSN,他们不仅在上面提到的技能,还可以理解对可持续性的化学性能,并涉及到言论自止的能力,并具有可持续性的性能。 CSN的经验将使参与者作为化学劳动力成员做出独特的未来贡献。 CSN沿着四个重点领域组织目标。一个领域的重点是建立纳米颗粒结构 - 功能关系。化学组成,大小,形状以及有机或无机表面修饰与计算方法和实验方法的结合进行了研究。过渡金属氧化物,由土壤丰富元件组成的纳米颗粒以及证明新型或新效用的纳米颗粒是焦点。第二个投资领域的中心是了解环境和生物媒体中发生的纳米颗粒变化。纳米颗粒核的化学变化,无机和有机离子影响纳米颗粒稳定性以及表面结构的作用是所探索的一些区域。第三个CSN推力区域探索了纳米颗粒涂层,称为冠状涂料,这是由于它们在水性界面处的环境或生物系统的暴露而形成的。开发了分析和计算方法,以表征和建模纳米颗粒冠的化学性质和形成机理。第四区域是针对化学的研究,对纳米颗粒的物理特性及其与生物系统的相互作用。具有明确定义的组成,结构和表面化学的纳米颗粒用于相关,更好地理解和预测纳米颗粒的物理特性,生物表面上的空间和临时相互作用,以及对细胞和生物体中分子相互作用的直接或间接影响。 CSN通过提供新的工具来表征纳米颗粒表面上的化学过程,并开发经过实验验证的计算方法来预测水性介质中复杂材料的分子水平行为,从而丰富了化学界。 CSN participants are engaged in activities aimed at developing the creation and dissemination of knowledge, enhancing innovation and translation of research products and outcomes to the commercial sector, and providing unique education and training opportunities for students and postdoctoral researchers from divers backgrounds.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(88)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters
- DOI:10.1021/acssensors.3c00082
- 发表时间:2023-03-20
- 期刊:
- 影响因子:8.9
- 作者:He,Jiayi;Spanolios,Eleni;Haynes,Christy L.
- 通讯作者:Haynes,Christy L.
Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers.
- DOI:10.1021/acsnano.0c09732
- 发表时间:2021-04-27
- 期刊:
- 影响因子:17.1
- 作者:Lochbaum, Christian A.;Chew, Alex K.;Zhang, Xianzhi;Rotello, Vincent;Van Lehn, Reid C.;Pedersen, Joel A.
- 通讯作者:Pedersen, Joel A.
DNA delivery by high aspect ratio nanomaterials to algal chloroplasts
高纵横比纳米材料将 DNA 递送至藻类叶绿体
- DOI:10.1039/d3en00268c
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Newkirk, Gregory M.;Jeon, Su-Ji;Kim, Hye-In;Sivaraj, Supreetha;De Allende, Pedro;Castillo, Christopher;Jinkerson, Robert E.;Giraldo, Juan Pablo
- 通讯作者:Giraldo, Juan Pablo
Colloidal Stabilization of Hydrophobic InSe 2D Nanosheets in a Model Environmental Aqueous Solution and their Impact on Shewanella oneidensis MR-1
- DOI:10.1039/d3en00382e
- 发表时间:2024-02
- 期刊:
- 影响因子:0
- 作者:Shreyasi Sengupta;S. Ambade;Tana O'Keefe;Falak Tawakalna;Jenny K. Hedlund Orbeck;Robert J. Hamers
- 通讯作者:Shreyasi Sengupta;S. Ambade;Tana O'Keefe;Falak Tawakalna;Jenny K. Hedlund Orbeck;Robert J. Hamers
Nanotechnology in agriculture: A solution to global food insecurity in a changing climate?
- DOI:10.1016/j.impact.2024.100502
- 发表时间:2024-03-21
- 期刊:
- 影响因子:4.9
- 作者:Vaidya,Shital;Deng,Chaoyi;White,Jason C.
- 通讯作者:White,Jason C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Hamers其他文献
Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries
用于锂离子电池安全电解质的具有低聚环氧乙烷取代基的烷基硅烷醚的合成和表征
- DOI:
10.1039/c0jm01596b - 发表时间:
2010-09 - 期刊:
- 影响因子:0
- 作者:
Lingzhi Zhang;Leslie Lyons;Jocelyn Newhouse;Zhengcheng Zhang;Megan Straughan;Zonghai Chen;Khalil Amine;Robert Hamers;Robert West - 通讯作者:
Robert West
Robert Hamers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Hamers', 18)}}的其他基金
Photoelectron Emission at Semiconductor-Liquid Interfaces
半导体-液体界面处的光电子发射
- 批准号:
1904106 - 财政年份:2019
- 资助金额:
$ 2000万 - 项目类别:
Standard Grant
RAISE-TAQS: Quantum-based chemical sensing
RAISE-TAQS:基于量子的化学传感
- 批准号:
1839174 - 财政年份:2018
- 资助金额:
$ 2000万 - 项目类别:
Standard Grant
Needs and Opportunities for Mid-Scale Instrumentation in Chemistry
化学中中型仪器的需求和机遇
- 批准号:
1644338 - 财政年份:2016
- 资助金额:
$ 2000万 - 项目类别:
Standard Grant
Center for Sustainable Nanotechnology
可持续纳米技术中心
- 批准号:
1503408 - 财政年份:2015
- 资助金额:
$ 2000万 - 项目类别:
Cooperative Agreement
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
- 批准号:
1507432 - 财政年份:2015
- 资助金额:
$ 2000万 - 项目类别:
Continuing Grant
Functional Carbon Nano-skins: Integrating Nanostructured Oxides with Molecular Systems
功能性碳纳米皮:纳米结构氧化物与分子系统的集成
- 批准号:
1310293 - 财政年份:2013
- 资助金额:
$ 2000万 - 项目类别:
Standard Grant
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
- 批准号:
1207281 - 财政年份:2012
- 资助金额:
$ 2000万 - 项目类别:
Continuing Grant
CCI Phase 1: Center for Sustainable Nanotechnology
CCI 第一阶段:可持续纳米技术中心
- 批准号:
1240151 - 财政年份:2012
- 资助金额:
$ 2000万 - 项目类别:
Standard Grant
Multifunctional Molecular Interfaces to Metal Oxide Surfaces
金属氧化物表面的多功能分子界面
- 批准号:
0911543 - 财政年份:2009
- 资助金额:
$ 2000万 - 项目类别:
Continuing Grant
Electrocatalytically Active Molecule-Nanostructure Hybrid Materials
电催化活性分子-纳米结构杂化材料
- 批准号:
0706559 - 财政年份:2008
- 资助金额:
$ 2000万 - 项目类别:
Continuing Grant
相似国自然基金
Sox9/eIF6通过调控EndMT促进衰老过程中心肌纤维化的机制研究
- 批准号:82301781
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
室温钠硫电池用氮氧化钛载体的d带中心调控与电催化机理研究
- 批准号:52307239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可见光驱动铜催化磷、硫中心手性化合物的合成
- 批准号:22371237
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
通往人类智能增强:医疗场景中以人为中心的人智交互设计及其效果研究
- 批准号:72301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中心体蛋白Ccdc159缺失所致无头精子综合症的发病机制研究
- 批准号:82371614
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CCI Phase I: NSF Center for Sustainable Photoredox Catalysis (SuPRCat)
CCI 第一阶段:NSF 可持续光氧化还原催化中心 (SuPRCat)
- 批准号:
2318141 - 财政年份:2023
- 资助金额:
$ 2000万 - 项目类别:
Standard Grant
NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer Production (CASFER)
NSF 促进可持续和分布式肥料生产工程研究中心 (CASFER)
- 批准号:
2133576 - 财政年份:2022
- 资助金额:
$ 2000万 - 项目类别:
Cooperative Agreement
CCI Phase I: NSF Center for Sustainable Separations of Metals
CCI 第一阶段:NSF 金属可持续分离中心
- 批准号:
1925708 - 财政年份:2019
- 资助金额:
$ 2000万 - 项目类别:
Standard Grant
NSF Center for Sustainable Polymers
NSF 可持续聚合物中心
- 批准号:
1901635 - 财政年份:2019
- 资助金额:
$ 2000万 - 项目类别:
Cooperative Agreement
NSF Engineering Research Center for Quantum Energy and Sustainable Solar Technologies: QESST
NSF 量子能源和可持续太阳能技术工程研究中心:QESST
- 批准号:
1041895 - 财政年份:2011
- 资助金额:
$ 2000万 - 项目类别:
Cooperative Agreement