AMC-SS: Stochastic Networks -- Analysis, Control and Applications
AMC-SS:随机网络——分析、控制和应用
基本信息
- 批准号:0906535
- 负责人:
- 金额:$ 33.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Stochastic models of complex networks with dynamic interactions arise in a wide variety of applications in science and engineering. Specific instances include high-tech manufacturing, customer service systems, telecommunications, computer systems, and gene regulatory networks. This project involves the study of a number of mathematical problems stemming from the challenges of analysing and controlling such stochastic networks. Some of the problems involve the development of general theory for broad classes of stochastic networks, while others focus on mathematical problems directly motivated by specific applications.Since the complexity of stochastic networks usually precludes exact analysis of detailed "microscopic" models, the focus here is on approximate models. Two levels of approximation are considered: first order approximations called fluid models, and second order approximations which frequently are diffusion models.Mathematical questions being addressed include rigorous justification of these approximations, analysing and controlling the behavior of the approximate models and interpreting the results for the original microscopic models. An important subtheme is understanding the interplay between the levels of approximation.Four topics are being studied:(i) dynamic scheduling for stochastic processing networks,(ii) analysis of processor sharing networks,(iii) connection level models for data networks,(iv) stochastic systems with delayed dynamics and state constraints. Some stochastic process aspects of these topics include study of singular diffusion control problems, analysis of measure-valued processes used to keep track of residual job sizes, foundational questions for reflected processes, and the asymptotic properties of functional stochastic differential equations with natural state constraints. Specific applications being investigated include Internet congestion control and biochemical reaction networks.Stochastic networks are mathematical models for complex systems involving dynamic interactions subject to uncertainty. Such networks arise in a wide variety of applications in science and engineering, especially in operations research, computer science, electrical engineering and bioscience/bioengineering. This grant funds research on mathematical problems arising from the need to analyse and control such stochastic networks. Two fundamental problems for such networks are(a) to identify and understand mechanisms that stabilize the systems, and(b) to quantify the performance of the systems under such stabilizing mechanisms.The networks under study are substantially more general than those that have been rigorously studied to date. Through their complexity and heterogeneity, these networks present challenging mathematical problems. This project involves the development of new mathematical theory and techniques as well as the application of this theory in studying specific problems such as Internet congestion control and understanding gene regulation. Collaborations with researchers familiar with areas of application, the training of graduate student researchers, and the dissemination of research results through publication in peer reviewed journals and presentations at cross-disciplinary research conferences are integral parts of the project.
该奖项根据 2009 年美国复苏和再投资法案(公法 111-5)提供资金。具有动态交互作用的复杂网络的随机模型出现在科学和工程的各种应用中。具体实例包括高科技制造、客户服务系统、电信、计算机系统和基因调控网络。该项目涉及对因分析和控制此类随机网络的挑战而产生的许多数学问题的研究。其中一些问题涉及广泛类别的随机网络的一般理论的发展,而其他问题则侧重于由特定应用直接激发的数学问题。由于随机网络的复杂性通常妨碍对详细“微观”模型的精确分析,因此这里的重点是在近似模型上。考虑两个层次的近似:一阶近似(称为流体模型)和二阶近似(通常是扩散模型)。要解决的数学问题包括这些近似的严格论证、分析和控制近似模型的行为以及解释结果原始的微观模型。一个重要的子主题是理解近似级别之间的相互作用。正在研究四个主题:(i)随机处理网络的动态调度,(ii)处理器共享网络的分析,(iii)数据网络的连接级模型,(iv) )具有延迟动力学和状态约束的随机系统。这些主题的一些随机过程方面包括奇异扩散控制问题的研究、用于跟踪剩余作业规模的测值过程的分析、反射过程的基本问题以及具有自然状态约束的函数随机微分方程的渐近性质。正在研究的具体应用包括互联网拥塞控制和生化反应网络。随机网络是涉及不确定性动态交互的复杂系统的数学模型。这种网络在科学和工程领域有着广泛的应用,特别是在运筹学、计算机科学、电气工程和生物科学/生物工程领域。该赠款资助因需要分析和控制此类随机网络而产生的数学问题的研究。这种网络的两个基本问题是(a)识别和理解稳定系统的机制,以及(b)量化系统在这种稳定机制下的性能。正在研究的网络比那些经过严格研究的网络要普遍得多。研究至今。由于其复杂性和异质性,这些网络提出了具有挑战性的数学问题。该项目涉及新数学理论和技术的发展,以及该理论在研究互联网拥塞控制和理解基因调控等具体问题中的应用。与熟悉应用领域的研究人员的合作、研究生研究人员的培训以及通过在同行评审期刊上发表和在跨学科研究会议上的演讲来传播研究成果是该项目的组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Williams其他文献
The use of metaphors by service users with diverse long-term conditions: a secondary qualitative data analysis
具有不同长期条件的服务使用者对隐喻的使用:二次定性数据分析
- DOI:
10.4081/qrmh.2023.11336 - 发表时间:
2023-12-04 - 期刊:
- 影响因子:0
- 作者:
H. Lempp;Chris Tang;Emily Heavey;K. Bristowe;Helen Allan;Vanessa Lawrence;Beatriz Santana Suarez;Ruth Williams;Lisa Hinton;Karen Gillett;A. Arber - 通讯作者:
A. Arber
Deepak Srivastava: follows his heart to study the heart.
Deepak Srivastava:跟随他的心来研究心。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:20.1
- 作者:
D. Srivastava;Ruth Williams - 通讯作者:
Ruth Williams
Comparative analysis of centrally mediated and inflammatory pain experiences amongst patients diagnosed with rheumatoid arthritis: A multimethods study
类风湿关节炎患者中枢介导疼痛和炎性疼痛经历的比较分析:一项多方法研究
- DOI:
10.1111/hex.14090 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:0
- 作者:
Z. Rutter;T. Esterine;Ruth Williams;Leonie S. Taams;K. Bannister;B. W. Kirkham;Heidi Lempp - 通讯作者:
Heidi Lempp
Ruth Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Williams', 18)}}的其他基金
Dynamics of Stochastic Networks: Approximation, Analysis, and Control
随机网络动力学:近似、分析和控制
- 批准号:
2153866 - 财政年份:2022
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Uncovering and re-engineering chromatin modification circuits that dictate epigenetic cell memory
合作研究:MODULUS:揭示和重新设计决定表观遗传细胞记忆的染色质修饰电路
- 批准号:
2027947 - 财政年份:2020
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Stochastic Network Dynamics: Approximation, Analysis and Control
随机网络动力学:近似、分析和控制
- 批准号:
1712974 - 财政年份:2017
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
Stochastic Networks Conference 2016
2016 年随机网络会议
- 批准号:
1551486 - 财政年份:2016
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Dynamic Stochastic Networks: Analysis, Control and Applications
动态随机网络:分析、控制和应用
- 批准号:
1206772 - 财政年份:2012
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
IGMS: Dynamic Models in Synthetic Biology
IGMS:合成生物学中的动态模型
- 批准号:
0825686 - 财政年份:2009
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
AMC-SS: Stochastic Networks - Control, Analysis and Applications
AMC-SS:随机网络 - 控制、分析和应用
- 批准号:
0604537 - 财政年份:2006
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Stochastic Networks: Analysis and Control
随机网络:分析与控制
- 批准号:
0305272 - 财政年份:2003
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
Stochastic Networks: Control and Performance
随机网络:控制和性能
- 批准号:
0071408 - 财政年份:2000
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
相似国自然基金
c-di-GMP调控T6SS2 ATPase影响禽致病性大肠杆菌毒力的分子机制
- 批准号:32302881
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高毒力肺炎克雷伯菌T6SS效应蛋白Hcp诱导内皮细胞焦亡促发肝脓肿相关免疫血栓的机制研究
- 批准号:82302325
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
益气养阴祛瘀方通过KDM4C介导的Bcl6启动子区组蛋白修饰干预SS Tfh分化的机制研究
- 批准号:82374402
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
核盘菌致病相关蛋白Ss-Caf1与丙酮酸脱氢酶互作在早期分泌途径中的功能研究
- 批准号:32372495
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道类器官模型探讨T6SS在细菌感染过程中对宿主MAPK信号通路的调控作用及机制研究
- 批准号:32300597
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
AMC-SS Collaborative research - Stochastic Processes and Time Series Models: Algorithms, Asymptotics and Phase Transitions
AMC-SS 合作研究 - 随机过程和时间序列模型:算法、渐近和相变
- 批准号:
0805979 - 财政年份:2008
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS: Collaborative Research: Stochastic Processes and Time Series Models: Algorithms, Asymptotics, and Phase Transitions
AMC-SS:协作研究:随机过程和时间序列模型:算法、渐近和相变
- 批准号:
0806145 - 财政年份:2008
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS: Collaborative Research: Stochastic Processes and Time Series Models: Algorithms, Asymptotics, and Phase Transitions
AMC-SS:协作研究:随机过程和时间序列模型:算法、渐近和相变
- 批准号:
0902075 - 财政年份:2008
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS Stochastic Modeling and Simulation for Traffic Flow
交通流 AMC-SS 随机建模与仿真
- 批准号:
0836699 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
AMC-SS, Collaborative Research: Explorations in Stochastic Moving Boundary Value Problems
AMC-SS,协作研究:随机移动边值问题的探索
- 批准号:
0703855 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant