EAGER: Detecting and Avoiding Side-Channel Attacks with Security Conscious Prediction

EAGER:通过安全意识预测检测和避免侧通道攻击

基本信息

项目摘要

For many years, computers have been using a technique called "speculation" to achieve good performance. Computers also implement security policies that prevent private data from being revealed to unauthorized entities. Recently, researchers have learned that speculation can unintentionally allow private information to be leaked. An attacker can manipulate speculation to communicate data through a "side-channel," defeating security policies. This project will explore ways to use machine learning to detect whether a computer is under a side-channel attack and trigger defenses that will keep private data from being leaked. The work will enable secure computing while maintaining the benefits of speculation.A predictor will be trained to detect whether the system is under attack, providing a level of confidence in the prediction. Input to the predictor will be features such as counts of microarchitectural events. The predictor will be trained offline and implemented in hardware to be used during execution. Using measurements from real and simulated systems, features correlated with malicious behavior will be explored. Predictors based on neural learning will be trained with those features. The predictor will be prototyped and evaluated in a microarchitectural and circuit simulator. Mitigations based on the predictor confidence will also be prototyped.Side-channel attacks threaten the continued use of speculation to provide high performance. It is expected that this work will enable the continued use of speculation with high confidence in the security of private user data while continuing the much needed level of performance demanded by today's mobile, server, and embedded applications. Students from under-represented groups will be encouraged to participate in the research. The research will be featured in classroom teaching at Texas A&M University.The project code and data will be made available for at least two years following the completion of the project. The products of this project including technical papers, code archive, and datasets will be made available at http://taco.cse.tamu.edu/secure/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多年来,计算机一直使用一种称为“推测”的技术来获得良好的性能。计算机还实施安全策略,防止私人数据泄露给未经授权的实体。最近,研究人员了解到,猜测可能会无意中泄露私人信息。攻击者可以操纵推测,通过“旁道”传输数据,从而破坏安全策略。该项目将探索使用机器学习来检测计算机是否受到旁道攻击并触发防御措施以防止私人数据泄露的方法。这项工作将实现安全计算,同时保持推测的好处。将训练预测器来检测系统是否受到攻击,从而为预测提供一定程度的置信度。预测器的输入将是微架构事件计数等特征。预测器将进行离线训练并在硬件中实现以在执行期间使用。使用真实和模拟系统的测量结果,将探索与恶意行为相关的特征。基于神经学习的预测器将使用这些特征进行训练。该预测器将在微架构和电路模拟器中进行原型设计和评估。基于预测器置信度的缓解措施也将原型化。侧通道攻击威胁到继续使用推测来提供高性能。预计这项工作将使人们能够对私人用户数据的安全性充满信心地继续使用推测,同时继续满足当今移动、服务器和嵌入式应用程序所要求的急需的性能水平。来自代表性不足群体的学生将被鼓励参与研究。该研究将在德克萨斯农工大学的课堂教学中进行展示。项目代码和数据将在项目完成后至少两年内提供。该项目的产品,包括技术论文、代码档案和数据集,将在 http://taco.cse.tamu.edu/secure/ 上提供。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermometer: profile-guided btb replacement for data center applications
温度计:数据中心应用的轮廓引导 BTB 替代品
  • DOI:
    10.1145/3470496.3527430
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song, Shixin;Khan, Tanvir Ahmed;Shahri, Sara Mahdizadeh;Sriraman, Akshitha;Soundararajan, Niranjan K;Subramoney, Sreenivas;Jiménez, Daniel A.;Litz, Heiner;Kasikci, Baris
  • 通讯作者:
    Kasikci, Baris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Jimenez其他文献

A Facility for Simulating Room Acoustics, Employing a High Density Hemispherical Array of Loudspeakers
采用高密度半球形扬声器阵列来模拟室内声学的设施
  • DOI:
    10.1007/s40857-015-0010-y
  • 发表时间:
    2015-03-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    D. Cabrera;Luis Miranda;Daniel Jimenez;Carl Edser;W. Martens
  • 通讯作者:
    W. Martens
Spatial and phylogenetic analysis of vesicular stomatitis virus over-wintering in the United States.
美国越冬水疱性口炎病毒的空间和系统发育分析。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Andrés Perez;S. Pauszek;Daniel Jimenez;W. Kelley;Z. Whedbee;Luis L. Rodriguez
  • 通讯作者:
    Luis L. Rodriguez
Preventing Cognitive Decline in Older Latinos with HIV through a Culturally Tailored Health Promotion Intervention: Protocol for a Single-Arm Pilot Trial" (Preprint)
通过文化定制的健康促进干预措施预防老年拉丁裔艾滋病毒感染者的认知能力下降:单臂试点试验方案”(预印本)
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Daniel Jimenez;Emily Ross;Elliott Weinstein;H. Gouse;Yue Pan;David Martinez Garza;Shanna Burke;Jin Joo;Victoria Behar
  • 通讯作者:
    Victoria Behar
Imbalance of SARS-CoV-2-specific CCR6+ and CXCR3+ CD4+ T cells and IFN-γ + CD8+ T cells in patients with Long-COVID.
Long-COVID 患者中 SARS-CoV-2 特异性 CCR6+ 和 CXCR3+ CD4+ T 细胞以及 IFN-γ+CD8+ T 细胞的不平衡。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    P. Martínez;María Celeste Marcos;Daniel Jimenez;J. Galván;R. Girón;Ana Adela Calero;Ana Arcos;E. Martín;H. de la Fuente;Laura Esparcia;Javier Aspa;Julio Ancochea;A. Alfranca;F. Sánchez
  • 通讯作者:
    F. Sánchez
A graph‐cut approach for pulmonary artery‐vein segmentation in noncontrast CT images
非造影 CT 图像中肺动脉静脉分割的图形切割方法
  • DOI:
    10.1016/j.media.2018.11.011
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Daniel Jimenez;D. Bermejo;P. Nardelli;Patricia Fraga;E. Moreno;Raúl San José Estépar;M. Ledesma
  • 通讯作者:
    M. Ledesma

Daniel Jimenez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Jimenez', 18)}}的其他基金

FoMR: Adaptive Branch Prediction
FoMR:自适应分支预测
  • 批准号:
    1912617
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Deep Learning for Microarchitectural Prediction
EAGER:用于微架构预测的深度学习
  • 批准号:
    1649242
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Branch Prediction
职业:分支预测
  • 批准号:
    1332597
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
SHF:CSR:Small:Improving Processor Efficiency with Prediction
SHF:CSR:Small:通过预测提高处理器效率
  • 批准号:
    1332598
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Reliable Performance for Modern Systems
SHF:大型:协作研究:现代系统的可靠性能
  • 批准号:
    1332654
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
SHF:CSR:Small:Improving Processor Efficiency with Prediction
SHF:CSR:Small:通过预测提高处理器效率
  • 批准号:
    1216604
  • 财政年份:
    2012
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Reliable Performance for Modern Systems
SHF:大型:协作研究:现代系统的可靠性能
  • 批准号:
    1012127
  • 财政年份:
    2010
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
EAGER: Code-Improving Transformations for Branch Prediction
EAGER:分支预测的代码改进转换
  • 批准号:
    0952604
  • 财政年份:
    2009
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CRI: IAD Resources for Branch Prediction Research
CRI:用于分支预测研究的 IAD 资源
  • 批准号:
    0751138
  • 财政年份:
    2008
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Branch Prediction
职业:分支预测
  • 批准号:
    0931874
  • 财政年份:
    2008
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属多酚配位微球高效淬灭的LFIA高灵敏检测中药中的克百威
  • 批准号:
    82374031
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
非均匀传输线网络中阻抗微变点的原位检测与状态估计方法
  • 批准号:
    52377003
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于超声谐波阵列增强的惯性摩擦焊弱结合缺陷检测方法
  • 批准号:
    52375328
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2412341
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Detecting Quantum Signatures in Nonadiabatic Molecular Dynamics
职业:检测非绝热分子动力学中的量子特征
  • 批准号:
    2340180
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Detecting warming impacts on carbon accumulation across a climate transect of Michigan peatlands
职业:检测变暖对密歇根泥炭地气候断面碳积累的影响
  • 批准号:
    2338357
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
In-situ Imaging and Detecting Electron Transfer for Single Site Reaction
单位点反应的原位成像和电子转移检测
  • 批准号:
    DE240100497
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了