Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory

非交换空间、它们的对称性和几何量子群论

基本信息

  • 批准号:
    2001128
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The project fits within the scope of the branch of mathematics known as noncommutative geometry, originating primarily in the discovery early in the 20th century that the then-newly-discovered phenomena of quantum mechanics require a novel mathematical formalism. The main point of departure from classical (or non-quantum) mathematics is the fact that by the very small-scale nature of our ambient world, certain pairs of measurable physical quantities cannot be measured simultaneously (with the momentum and position of a particle serving as the preeminent example). Mathematically, this manifests as the non-commutativity of a pair of transformations on a physical system, justifying the name "noncommutative" for the relevant field of study. The formal objects that model the symmetries (that is, structure-preserving transformations) of a physical system modeled according to this paradigm are known as a "quantum groups", and they are the central theme of the present research proposal. The training of graduate students is an important part of this project.A number of broader themes inform the problems under consideration. As one example, discrete quantum groups, like their classical counterparts, fall into a constellation of taxonomic classes based on the approximation properties enjoyed by their group algebras. The quantum versions of the classical results are typically more technically demanding, only partially settled, and good test beds for the strengths of the geometric-group-theoretic and operator-algebraic techniques that jointly make classical discrete groups such rich geometric and analytical objects. In another direction, much light can be shed on the structure and above-mentioned approximation properties of quantum groups (discrete or more generally, locally compact) by category and representation-theoretic means. For that reason, results to the effect that group-theoretic data (e.g. the center of a locally compact quantum group) can be reconstructed from categories of unitary representations with their underlying structure are of some interest in the field and the project. As a third example, randomness features heavily in the study of groups and other discrete objects (probabilistic methods are very important in graph theory, for instance); the general phenomenon whereby a "generic" object, constructed randomly (with the technical meaning of that phrase depending on the specifics of the problem) tends to be highly asymmetric appears to replicate in the quantum setting, with "most" finite graphs, finite metric spaces, etc. admitting no quantum symmetries. Such generic rigidity results always recover their classical counterparts (given that quantum symmetries always encompass ordinary ones), but usually require more involved and often more enlightening proof techniques. It is hoped the requisite eclectic mix of approaches to the problems (combinatorial, representation-theoretic, probabilistic, operator-algebraic, etc.) will offer insight not only into the nature of the quantum-mathematical objects ostensibly being studied, but also into the classical versions thereof.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目属于非交换几何数学分支的范围,该分支主要起源于 20 世纪初的发现,即当时新发现的量子力学现象需要一种新颖的数学形式主义。与经典(或非量子)数学的主要背离点是,由于我们周围世界的尺度非常小,无法同时测量某些成对的可测量物理量(粒子的动量和位置)作为杰出的例子)。在数学上,这表现为物理系统上一对变换的非交换性,这证明了相关研究领域的“非交换性”名称是合理的。对根据这种范式建模的物理系统的对称性(即结构保持变换)进行建模的形式对象被称为“量子群”,它们是本研究提案的中心主题。研究生的培训是该项目的重要组成部分。许多更广泛的主题揭示了正在考虑的问题。举一个例子,离散量子群,就像它们的经典对应物一样,根据其群代数所享有的近似性质落入一系列分类类别。经典结果的量子版本通常对技术要求更高,只是部分解决,并且是几何群论和算子代数技术优势的良好测试平台,这些技术共同使经典离散群成为如此丰富的几何和分析对象。在另一个方向上,可以通过类别和表示理论手段来阐明量子群(离散或更一般地,局部紧凑)的结构和上述近似性质。因此,群论数据(例如局部紧量子群的中心)可以从酉表示类别及其底层结构重建的结果在该领域和项目中引起了一些兴趣。第三个例子,随机性在群体和其他离散对象的研究中占有重要地位(例如,概率方法在图论中非常重要);随机构造的“通用”对象(该短语的技术含义取决于问题的具体情况)往往高度不对称的一般现象似乎在量子环境中复制,具有“大多数”有限图、有限度量空间等不承认量子对称性。这种通用的刚性结果总是能恢复它们的经典对应物(假设量子对称性总是包含普通的对称性),但通常需要更多复杂且更具启发性的证明技术。希望解决问题所需的折衷方法(组合、表示论、概率、算子代数等)不仅能够洞察表面上正在研究的量子数学对象的本质,而且还能洞察量子数学对象的本质。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shilov boundaries determine irreducible bounded symmetric domains
Shilov 边界确定不可约有界对称域
Fields of locally compact quantum groups: Continuity and pushouts
局部紧量子群的域:连续性和推出
Random quantum graphs
随机量子图
Recursive sequences attached to modular representations of finite groups
附加到有限群的模表示的递归序列
  • DOI:
    10.1016/j.jalgebra.2022.03.024
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Chirvasitu, Alexandru;Hudson, Tara;Upadhyay, Aparna
  • 通讯作者:
    Upadhyay, Aparna
Quantum Galois groups of subfactors
  • DOI:
    10.1142/s0129167x22500136
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    S. Bhattacharjee;A. Chirvasitu;Debashish Goswami
  • 通讯作者:
    S. Bhattacharjee;A. Chirvasitu;Debashish Goswami
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandru Chirvasitu其他文献

Alexandru Chirvasitu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandru Chirvasitu', 18)}}的其他基金

Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
  • 批准号:
    1801011
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
  • 批准号:
    1565226
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

A study on perfectoid spaces and applications to commutative ring theory
完美类空间及其在交换环理论中的应用研究
  • 批准号:
    18K03257
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visible actions on spherical homogeneous spaces and applications to non-commutative harmonic analysis
球面齐次空间上的可见行为及其在非交换调和分析中的应用
  • 批准号:
    17K14155
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
  • 批准号:
    EP/M017516/2
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Fellowship
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
  • 批准号:
    EP/M017516/1
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Fellowship
Deformation of Fisher information and entropy in non-commutative probability spaces
非交换概率空间中 Fisher 信息和熵的变形
  • 批准号:
    26400112
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了