Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry

量子群、量子对称性和非交换几何

基本信息

  • 批准号:
    1565226
  • 负责人:
  • 金额:
    $ 10.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2017-11-30
  • 项目状态:
    已结题

项目摘要

Noncommutative geometry is a field of pure mathematics that traces its origins to problems in mathematical physics motivated by the discovery of quantum phenomena. The typical mathematical framework in which geometric entities (such as the 4-dimensional space-time that underlies the general theory of relativity) can be studied algebraically needs to be enlarged and generalized if it is to be reconciled with quantum phenomena. In the resulting setup, the symmetries of a physical system (in the sense of structure-preserving transformations) sometimes need to be discarded and replaced with new and more exotic notions of symmetry. The mathematical embodiment of these exotic symmetries are known as "quantum groups," and they are the main focus of this project. Much of what can be taken for granted in the context of "plain" geometry and actions of ordinary transformations on ordinary spaces becomes problematic in the noncommutative setting. This research project aims to shed light on a number of these problems, in a range of subfields within the larger realm of noncommutative geometry. This project investigates several aspects of noncommutative geometry that revolve around the notion of quantum symmetry. This involves studying quantum groups, their representation theory, and their actions on algebraic and geometric structures, as well as attendant problems in non-commutative algebraic geometry. One goal is to further understand the phenomenon of quantum rigidity, whereby certain structures admit no truly quantum symmetries. What this means is that whenever a sufficiently well-behaved Hopf algebra (which is the algebraic embodiment of a quantum group) coacts in a structure-preserving manner, the coaction factors through one by the function algebra on an ordinary group. Many special cases of this are known (integral affine algebraic varieties, certain smooth non-commutative projective algebraic varieties, compact connected smooth manifolds, certain classes of metric spaces, etc.), but the general phenomenon is poorly understood. Another goal is to attempt to transport tools and concepts specific to discrete or reductive algebraic groups (such as Borel subgroups, maximal tori, weight systems, compactifications, residual finiteness, linearity) over to quantum groups in order to further elucidate their structure and representation theory. Finally, symmetry considerations allow for the construction of new examples of smooth noncommutative projective schemes that in some sense behave generically within the moduli spaces that classify such schemes. The representation theory of the corresponding algebras would then shed light into the nature of these moduli spaces that are at the moment not well understood.
非交换几何是纯数学的一个领域,其起源可以追溯到由量子现象的发现引发的数学物理问题。如果要与量子现象相一致,可以用代数方法研究几何实体(例如作为广义相对论基础的 4 维时空)的典型数学框架需要扩大和推广。在最终的设置中,物理系统的对称性(在结构保持变换的意义上)有时需要被丢弃并用新的、更奇特的对称概念取代。这些奇异对称性的数学体现被称为“量子群”,它们是该项目的主要焦点。在“普通”几何的背景下以及普通空间上的普通变换的作用中,许多被认为是理所当然的东西在非交换环境中变得有问题。该研究项目旨在阐明非交换几何更大领域内一系列子领域中的许多问题。该项目研究了围绕量子对称概念的非交换几何的几个方面。这涉及研究量子群、它们的表示理论、它们对代数和几何结构的作用,以及非交换代数几何中的伴随问题。一个目标是进一步了解量子刚性现象,即某些结构不存在真正的量子对称性。这意味着,每当一个表现足够良好的霍普夫代数(量子群的代数体现)以结构保持方式相互作用时,相互作用就会通过普通群上的函数代数因式分解 1。许多特殊情况是已知的(积分仿射代数簇、某些光滑非交换射影代数簇、紧连通光滑流形、某些类度量空间等),但一般现象却知之甚少。另一个目标是尝试将离散或还原代数群特有的工具和概念(例如 Borel 子群、最大环面、权重系统、紧化、残差有限性、线性)转移到量子群,以进一步阐明其结构和表示理论。最后,对称性考虑允许构造平滑非交换射影方案的新示例,这些示例在某种意义上通常在对此类方案进行分类的模空间内表现。相应代数的表示论将揭示这些目前尚未被很好理解的模空间的本质。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some algebras having relations like those for the 4-dimensional {S}klyanin algebras
一些代数具有类似于 4 维 {S}klyanin 代数的关系
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandru Chirvasitu其他文献

(In)equality distance patterns and embeddability into Hilbert spaces
(中)等距离模式和希尔伯特空间的可嵌入性
Full quantum crossed products, invariant measures, and type-I lifting
全量子交叉积、不变测度和 I 型提升
A characteristic-index inequality for closed embeddings of locally compact groups
局部紧群闭嵌入的特征指数不等式
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Alexandru Chirvasitu
  • 通讯作者:
    Alexandru Chirvasitu
On the dearth of coproducts in the category of locally compact groups
关于局部紧群范畴中​​副产品的缺乏

Alexandru Chirvasitu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandru Chirvasitu', 18)}}的其他基金

Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
  • 批准号:
    2001128
  • 财政年份:
    2020
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
  • 批准号:
    1801011
  • 财政年份:
    2017
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant

相似国自然基金

信息交流对异质性团体感知觉决策的影响研究:基于认知计算的动态优势表征
  • 批准号:
    32300910
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于分子互作研究多酚结构差异对面团体系面筋蛋白网络形成的调控机制
  • 批准号:
    32301998
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
团体创新中的观念生成路径及其神经基础研究
  • 批准号:
    32300900
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向小团体的多模态连续情感识别研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
位置社交网络中天际线团体搜索技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Groups, Quantum Symmetries, and Non-Commutative Geometry
量子群、量子对称性和非交换几何
  • 批准号:
    1801011
  • 财政年份:
    2017
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Research on symmetries and mapping class groups on the surfaces in low-dimensional manifolds
低维流形曲面上的对称性和映射类群研究
  • 批准号:
    16K05156
  • 财政年份:
    2016
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symmetries of Spaces: Groups and Topology
空间的对称性:群和拓扑
  • 批准号:
    450191-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 10.2万
  • 项目类别:
    University Undergraduate Student Research Awards
Detection of hidden symmetries in sporadic simple groups and vertex operator algebras
零星单群和顶点算子代数中隐藏对称性的检测
  • 批准号:
    17340001
  • 财政年份:
    2005
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
International Research Fellow Awards: Dynamics of Maps with the Symmetries of Symmetric and Alternating Groups
国际研究员奖:具有对称群和交替群对称性的地图动力学
  • 批准号:
    9901230
  • 财政年份:
    1999
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了