Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow

合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模

基本信息

  • 批准号:
    2000968
  • 负责人:
  • 金额:
    $ 26.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Porous media (e.g., sponge, paper, fabrics, rock, and soil) are materials with pores distributed in a solid matrix. When pores are connected, fluids can flow through them. Understanding and predicting fluid flow in porous media is important as it occurs in a wide range of applications, from contamination of groundwater and soil to printing on paper and fabrics. By understanding flow pathways, we can make accurate predictions of the fluid flow, which in turn, will help us design and control related processes. However, predicting fluid flow in porous media is still a long-standing problem. While observing fluid flow in simple two-dimensional porous media can be straightforward, the same is not true in more realistic three-dimensional cases. This proposal aims to carry out an integrated computational and experimental study to provide a more accurate description of flow pathways and realistic fluid flow and the resultant deformations in such materials. Although non-destructive 3D imaging has provided much information about fluid distribution in porous materials, fast and cost-effective 4D pore-scale visualization (i.e., over a period of time) is still very difficult, costly and time-consuming. Furthermore, although visualization of multiphase flow in porous media has been extensively studied in 2D models, there have been very few of such studies in 4D (or even 3D). One goal of this proposal is to develop a 4D method for visualization of two-phase flow in transparent porous media and the deformation that it induces in the media beyond the realm of creeping flow, i.e. when the flow is very slow. This goal will be achieved by collecting 2D images from various angles, which will then be used with a computational algorithm to build a highly detailed 4D image of the multiphase flow. Detailed computations will be carried out in which the two-phase fluid flow and the resulting deformation will be simulated in the same porous media beyond creeping flow. The investigators will also study and identify the critical Reynolds number (Re) at which the transition from the Darcy regime to Forchheimer and eventually turbulent flows occurs. The effect of wettability on the deformation of porous media during two-phase flow will also be investigated. Distinct deformation modes of a porous medium will also be examined under a wide range of Reynolds number and wettability conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多孔培养基(例如海绵,纸,织物,岩石和土壤)是孔中分布在固体基质中的材料。当连接孔时,流体可以流过它们。了解和预测多孔培养基中的流体流量很重要,因为它发生在广泛的应用中,从地下水和土壤污染到在纸张和织物上印刷。通过了解流道,我们可以对流体流进行准确的预测,这反过来将有助于我们设计和控制相关的过程。但是,预测多孔培养基中的流体流量仍然是一个长期存在的问题。虽然在简单的二维多孔介质中观察流体流程可能很简单,但在更现实的三维情况下,情况并非如此。该提案旨在进行集成的计算和实验研究,以更准确地描述流道和逼真的流体流以及所得的这种材料中的变形。尽管无损的3D成像提供了有关多孔材料中流体分布的大量信息,但快速且具有成本效益的4D孔隙尺度可视化(即在一段时间内)仍然非常困难,成本高昂且耗时。此外,尽管在2D模型中对多孔介质中多相流的可视化进行了广泛的研究,但在4D(甚至3D)中,此类研究很少。该提案的一个目标是开发一种4D方法,以可视化透明多孔介质中的两相流量以及它在爬行流的范围之外引起的介质的变形,即当流动非常慢时。该目标将通过从各个角度收集2D图像来实现,然后将其与计算算法一起使用,以构建多相流的高度详细的4D图像。将进行详细的计算,其中两相流体流以及所得的变形将在相同的多孔介质中模拟,而不是爬行流。研究人员还将研究和确定从达西政权向福切氏症的过渡,最终发生湍流的关键雷诺数(RE)。还将研究润湿性对两相流动过程中多孔介质变形的影响。在广泛的雷诺数和润湿性条件下,还将检查多孔介质的独特变形模式。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven discovery of the governing equations for transport in heterogeneous media by symbolic regression and stochastic optimization
通过符号回归和随机优化,以数据驱动的方式发现异质介质中传输的控制方程
  • DOI:
    10.1103/physreve.107.l013301
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Im, Jinwoo;de Barros, Felipe P.;Masri, Sami;Sahimi, Muhammad;Ziff, Robert M.
  • 通讯作者:
    Ziff, Robert M.
Estimating Dispersion Coefficient in Flow Through Heterogeneous Porous Media by a Deep Convolutional Neural Network
通过深度卷积神经网络估计非均质多孔介质流动的色散系数
  • DOI:
    10.1029/2021gl094443
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Kamrava, Serveh;Im, Jinwoo;Barros, Felipe P.;Sahimi, Muhammad
  • 通讯作者:
    Sahimi, Muhammad
Percolation and conductivity in evolving disordered media
不断演化的无序介质中的渗流和电导率
  • DOI:
    10.1103/physreve.108.024132
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Berg, Carl Fredrik;Sahimi, Muhammad
  • 通讯作者:
    Sahimi, Muhammad
Universal Frequency-Dependent Permeability of Heterogeneous Porous Media: Effective–Medium Approximation and Critical-Path Analysis
非均质多孔介质的通用频率相关渗透率:有效介质近似和关键路径分析
  • DOI:
    10.1007/s11242-022-01839-8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Sahimi, Muhammad
  • 通讯作者:
    Sahimi, Muhammad
The Transition from Darcy to Nonlinear Flow in Heterogeneous Porous Media: I—Single-Phase Flow
  • DOI:
    10.1007/s11242-024-02070-3
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    S. Arbabi;Muhammad Sahimi
  • 通讯作者:
    S. Arbabi;Muhammad Sahimi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muhammad Sahimi其他文献

Mechanics of disordered solids. III. Fracture properties.
无序固体力学。
Gaia: Complex systems prediction for time to adapt to climate shocks
盖亚:复杂系统预测适应气候冲击的时间
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen G. Hunt;Muhammad Sahimi;B. Faybishenko;Markus Egli;Z. Kabala;B. Ghanbarian;F. Yu
  • 通讯作者:
    F. Yu
Scaling, multifractality, and long-range correlations in well log data of large-scale porous media
  • DOI:
    10.1016/j.physa.2011.01.010
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hassan Dashtian;G. Reza Jafari;Muhammad Sahimi;Mohsen Masihi
  • 通讯作者:
    Mohsen Masihi
Molecular Dynamics Study of Structure, Folding, and Aggregation of Poly-PR and Poly-GR Proteins
  • DOI:
    10.1016/j.bpj.2020.11.2258
  • 发表时间:
    2021-01-05
  • 期刊:
  • 影响因子:
  • 作者:
    Size Zheng;Ali Sahimi;Katherine S. Shing;Muhammad Sahimi
  • 通讯作者:
    Muhammad Sahimi
Fractal dimension of the bone marrow in metastatic lesions.
转移性病变中骨髓的分形维数。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Farhad Moatamed;Farhad Moatamed;Muhammad Sahimi;Muhammad Sahimi;Faramarz Naeim;Faramarz Naeim
  • 通讯作者:
    Faramarz Naeim

Muhammad Sahimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muhammad Sahimi', 18)}}的其他基金

Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
Novel SiC Nanoporous Materials for Separation Applications
用于分离应用的新型碳化硅纳米多孔材料
  • 批准号:
    0553349
  • 财政年份:
    2006
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
GOALI: Fundamental Studies of Transport of Mixtures in Microporous Membranes under Supercritical Conditions
目标:超临界条件下微孔膜中混合物传输的基础研究
  • 批准号:
    9907481
  • 财政年份:
    2000
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
Dynamic Monte Carlo and Molecular Dynamics Simulations of Transport Catalytic Materials
传输催化材料的动态蒙特卡罗和分子动力学模拟
  • 批准号:
    9122529
  • 财政年份:
    1992
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于宏微功能基元的4D打印NiTi合金制备研究
  • 批准号:
    52371027
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
4D打印双相磷酸钙/壳聚糖复合可降解血管外支架的制备及性能研究
  • 批准号:
    82300875
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人与AI创造力共舞: AI介入的创造力悖论及基于综合创造力4D模型的破解机制研究
  • 批准号:
    72372045
  • 批准年份:
    2023
  • 资助金额:
    42 万元
  • 项目类别:
    面上项目
4D打印诱导淀粉/壳聚糖分子运动行为定向调控镁结肠吸收的研究
  • 批准号:
    32372276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
4D打印记忆聚合物支架的动态机械信号介导的Cav-1/YAP轴调控骨免疫促进颌骨再生的机制研究
  • 批准号:
    82371006
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402728
  • 财政年份:
    2024
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2246916
  • 财政年份:
    2023
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
  • 批准号:
    2326113
  • 财政年份:
    2023
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
  • 批准号:
    2215646
  • 财政年份:
    2022
  • 资助金额:
    $ 26.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了