Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows

合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析

基本信息

  • 批准号:
    2246916
  • 负责人:
  • 金额:
    $ 9.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Forces resulting from blood flow interaction with walls of blood vessels have major impact on the initiation and progression of vascular diseases such as aneurysms, atherosclerosis, and vasospasms. Consequently, detailed and accurate blood flow analysis could be key to prognosis and treatment of such diseases. There are two popular modalities that are currently used to study 3D blood flow. The first is based on computational fluid dynamic (CFD) simulations. The second is through direct non-invasive imaging using techniques such as phase contrast magnetic resonance imaging (a.k.a 4D-Flow MRI). CFD requires accurate vascular geometry, model parameters, and estimates of boundary flow and initial conditions. These are time consuming and very difficult, if not impossible to estimate. Furthermore, the fidelity of CFD is limited by model assumptions. On the other hand, 4D-Flow MRI directly measures in-vivo volumetric blood flow velocities, but has low spatio-temporal resolution and the scans are contaminated by noise and image artifacts. The proposed project overcomes the limitations of both CFD and 4D-Flow MRI through a novel technique called deep data-assimilation. Here deep neural nets are used to model the blood flow. The training process imposes data fidelity with 4D-Flow MRI and simultaneously ensures that the physics of fluid flow and magnetic resonance are satisfied. The neural nets are then used to generate accurate dense spatio-temporal flow fields and flow dependent parameters such as wall shear stresses, vorticity etc. The ability to enhance 4D-Flow MRI will enable clinical researchers to investigate the impact of hemodynamics on the initiation and progression of vascular diseases. This will lead to novel physics-based flow image analysis tools for disease management that will significantly reduce cost and optimize treatment plans.The goal of the proposed project is to enable accurate and reliable hemodynamic analysis of cardio-vascular flows from time resolved three dimensional phase contrast magnetic resonance imaging (4D-Flow MRI). The proposed approach uses physics informed deep learning wherein time-varying flow (velocity and pressure) and field (magnetic moment) variables are modeled as deep neural nets. The training process fits 4D-Flow MRI data and also imposes blood flow physics (Navier-Stokes equation) and MRI acquisition physics (Bloch equations) as constraints. Creative design of loss functions in the learning process will achieve super-resolution, attenuate noise, and eliminate various image artifacts. Automatic differentiation will facilitate truncation error-free computation of velocity-dependent higher order hemodynamic parameters. Carefully designed in-vitro experiments will be used to validate and optimize the method. The proposed hybrid experimental and deep learning approach will create a new paradigm in cardiovascular flow research wherein the governing equations will be directly applied to low quality imaging data using deep learning to raise the reliability and accuracy to the level needed for scientific discovery. The project will provide opportunities to train graduate students in the latest deep-learning based techniques in engineering, engage undergraduate students in research through numerous programs at UW-Milwaukee and Northern Arizona University, and outreach to high school students belonging to marginalized communities through summer programs at UW-Milwaukee.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
血流与血管壁相互作用引起的力对血管疾病(例如动脉瘤,动脉粥样硬化和Vasospasms)的起始和进展产生重大影响。因此,详细和准确的血流分析可能是预后和治疗此类疾病的关键。目前有两种流行方式用于研究3D血流。第一个基于计算流体动力学(CFD)模拟。第二个是通过使用诸如相对比磁共振成像(又称4D-Flow MRI)的技术直接非侵入成像。 CFD需要准确的血管几何形状,模型参数以及边界流和初始条件的估计。这些很耗时,而且非常困难,即使不是不可能估计。此外,CFD的保真度受模型假设的限制。另一方面,4D流MRI直接测量体内体积的血流速度,但时空分辨率较低,并且扫描被噪声和图像伪影污染。提出的项目通过一种称为深度数据相似的新技术克服了CFD和4D-Flow MRI的局限性。在这里,深神网用于对血流进行建模。训练过程通过4D流MRI施加数据保真度,并同时确保满足流体流和磁共振的物理。然后,神经网被用于生成准确的密集时空流动场和流动依赖性参数,例如壁剪应力,涡度等。增强4D-Flow MRI的能力将使临床研究人员能够研究血液动力学对血管疾病的启动和进展的影响。这将导致疾病管理的新型基于物理的流程图像分析工具,可显着降低成本并优化治疗计划。拟议项目的目的是从时间分解的三维相反磁共振共振成像(4D-FLOW MRI)对心血管流动的准确而可靠的血液动力学分析(4D-FLOW MRI)。所提出的方法使用物理知情的深度学习,其中随时间变化的流动(速度和压力)以及场(磁矩)变量被建模为深神经网。训练过程符合4D流MRI数据,还构成了血流物理(Navier-Stokes方程)和MRI获取物理(BLOCH方程)作为约束。学习过程中损失功能的创造性设计将实现超分辨率,减轻噪音并消除各种图像伪像。自动分化将促进速度依赖性高阶血液动力学参数的无截断计算。精心设计的体外实验将用于验证和优化该方法。拟议的混合实验和深度学习方法将在心血管流动研究中创建一个新的范式,其中管理方程将直接使用深度学习直接应用于低质量的成像数据,以提高科学发现所需水平的可靠性和准确性。该项目将为培训研究生以最新的深入学习技术培训研究生,通过UW-Milwaukee和北亚利桑那大学的众多课程吸引本科生从事研究,并向属于边缘化社区的高中生通过UW-Milwaukee的夏季计划,通过UW-Milwaukee的夏季奖励,该奖项通过UW-Milwauke.This Internation Internation the NSF的基础,并反映了NSF的基础,并反映了NSF的资产,并依靠NSF的基金会,并以此为基础。更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation
用于解决奇异扰动边界层问题的理论指导物理信息神经网络
  • DOI:
    10.1016/j.jcp.2022.111768
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Arzani, Amirhossein;Cassel, Kevin W.;D'Souza, Roshan M.
  • 通讯作者:
    D'Souza, Roshan M.
ENHANCING CORRUPT CARDIOVASCULAR FLOW DATA WITH MACHINE LEARNING
通过机器学习增强损坏的心血管流量数据
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amirhossein Arzani其他文献

Interpreting and generalizing deep learning in physics-based problems with functional linear models
使用函数线性模型解释和推广基于物理问题的深度学习
  • DOI:
    10.48550/arxiv.2307.04569
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amirhossein Arzani;Lingxiao Yuan;P. Newell;Bei Wang
  • 通讯作者:
    Bei Wang
Transport and Mixing in Patient Specific Abdominal Aortic Aneurysms With Lagrangian Coherent Structures
具有拉格朗日相干结构的患者特异性腹主动脉瘤的运输和混合
  • DOI:
    10.1115/sbc2012-80475
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amirhossein Arzani;S. Shadden
  • 通讯作者:
    S. Shadden
Hemodynamics and Transport in Patient-specific Abdominal Aortic Aneurysms
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amirhossein Arzani
  • 通讯作者:
    Amirhossein Arzani
Flow topology and targeted drug delivery in cardiovascular disease.
心血管疾病中的流拓扑和靶向药物输送。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Sara S Meschi;Ali Farghadan;Amirhossein Arzani
  • 通讯作者:
    Amirhossein Arzani

Amirhossein Arzani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amirhossein Arzani', 18)}}的其他基金

EAGER: Understanding complex wind-driven wildfire propagation patterns with a dynamical systems approach
EAGER:通过动力系统方法了解复杂的风驱动野火传播模式
  • 批准号:
    2330212
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
  • 批准号:
    2247173
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Continuing Grant
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
  • 批准号:
    2143249
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Continuing Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    2246911
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2103434
  • 财政年份:
    2021
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    1947559
  • 财政年份:
    2020
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant

相似国自然基金

智能建造“人机协作”场景下高龄建筑工人胜任力的影响机理与增强方法研究
  • 批准号:
    72301131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人类与AI协作模式下的应急救援人员脑认知机制与认知增强研究
  • 批准号:
    72374088
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
基于驾驶人认知决策迁移的人机协作混合增强智能控制策略研究
  • 批准号:
    52102451
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于驾驶人认知决策迁移的人机协作混合增强智能控制策略研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于双手协作运动机理的仿人外肢体设计与协同控制研究
  • 批准号:
    51905375
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323983
  • 财政年份:
    2024
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: URoL:ASC: Microbiome-mediated plant genetic resistance for enhanced agricultural sustainability
合作研究:URoL:ASC:微生物介导的植物遗传抗性以增强农业可持续性
  • 批准号:
    2319568
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了