Uniformization of Metric Spaces and Quasiconformal Removability
度量空间的均匀化和拟共形可去除性
基本信息
- 批准号:2000096
- 负责人:
- 金额:$ 9.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop methods and geometric tools for understanding the geometry of fractal spaces. Fractal spaces appear in description of many natural phenomena such as in lightning bolts, growth models of plants and crystals, snowflakes, coastlines, and river networks. The questions that the project plans to study have applications whenever storage of three-dimensional information (landscapes, faces, human brain surface) in a two-dimensional image is desired without loss of information. While in the case of "smooth" objects (objects that are not modeled using fractals) the corresponding mathematical theory is well understood, this is not the case for fractal objects, which require the development of new techniques. This project aims to develop mathematical theory for such fractal spaces. Another focus of this project is the study of removable fractal sets. Fractal sets appear sometimes as boundaries of otherwise "smooth" objects, and for many problems it is useful to know that these fractals are removable, in the sense that their presence can be ignored for some purposes. Removability of fractal sets has applications in mathematical problems that require "gluing" together two functions, or two dynamical systems, or two surfaces, and could result in the better understanding of dynamical systems in physics.This project consists of three parts, concerning the uniformization of Sierpinski carpets, the uniformization of two-dimensional metric surfaces, and the problem of removability of fractal sets for conformal maps. Continuing earlier work, the PI will study problems related to the uniformization of Sierpinski carpets by square Sierpinski carpets and the PI will study the regularity of the uniformizing map, which is already known to be quasisymmetric or discrete quasiconformal. The PI will also work in questions related to Hausdorff dimension distortion under the uniformizing map and in generalizations of this planar uniformization theory to abstract Sierpinski carpets. Another focus is the problem of uniformization of two-dimensional metric surfaces. In this direction, the PI will investigate possible generalizations of uniformization theorems for two-dimensional surfaces by Euclidean space and concentrate efforts on weakening the existing geometric assumptions. Finally, the PI will work on extending earlier results on the removability of fractal sets, by finding topological criteria for fractal sets (resembling the Sierpinski gasket or carpet) to be non-removable, studying the equivalence of Sobolev removability and conformal removability, and exploring the connections of removability to the problem of rigidity of circle domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是开发理解分形空间几何形状的方法和几何工具。分形空间出现在许多自然现象的描述中,例如在闪电,植物和晶体的生长模型,雪花,海岸线和河流网络中。每当需要在二维图像中存储三维信息(风景,面部,人脑表面)时,该项目计划研究的问题就会有应用。在“平滑”对象(未使用分形建模的对象)的情况下,相应的数学理论是充分理解的,但对于需要开发新技术的分形对象并非如此。该项目旨在为这种分形空间开发数学理论。该项目的另一个重点是研究可移动分形集。分形集有时会作为其他“光滑”对象的边界出现,并且对于许多问题而言,知道这些分形是可移动的,从某种意义上说,出于某些目的可以忽略它们的存在。分形集合的可移动性在数学问题中有应用,这些问题需要“粘合”两个功能,或两个动态系统或两个表面,并且可能会更好地理解物理学中的动态系统。该项目由三个部分组成,使得Sierpinski地毯的均匀化统一的统一范围均事范围,并将其均置入了两大方面的问题。继续进行较早的工作,PI将研究与Square Sierpinski地毯对Sierpinski地毯统一化的问题,PI将研究均匀图的规律性,该地图的规律性已知已知是准对称或离散的准圆顶形式。 PI还将在与Hausdorff尺寸扭曲的问题有关的问题中起作用,在均匀的地图和该平面统一理论对抽象的Sierpinski地毯上的概括中。另一个重点是二维度量表面均匀化的问题。在这个方向上,PI将通过欧几里得空间研究统一定理的统一定理的可能概括,并集中精力削弱现有的几何假设。最后,PI将通过寻找分形集(类似于Sierpinski垫圈或地毯)的拓扑标准来扩展分形集合的可移动性的早期结果,以研究sobolev sobolev的可移动性和保质可移动性的范围,并探索cression croment of cirdive croment of Circle的连接的等效性并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Falconer’s $(K, d)$ distance set conjecture can fail for strictly convex sets $K$ in $\mathbb R^d$
Falconer 的 $(K, d)$ 距离集猜想对于 $mathbb R^d$ 中的严格凸集 $K$ 可能会失败
- DOI:10.4171/rmi/1254
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bishop, Christopher;Drillick, Hindy;Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
Extension of boundary homeomorphisms to mappings of finite distortion
边界同胚到有限畸变映射的扩展
- DOI:10.1112/plms.12462
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Karafyllia, Christina;Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
On the Hausdorff dimension of the residual set of a packing by smooth curves
光滑曲线堆积残差集的Hausdorff维数
- DOI:10.1112/jlms.12546
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Maio, Steven;Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
Conformal uniformization of planar packings by disk packings
圆盘填料对平面填料的共形均匀化
- DOI:10.1016/j.aim.2023.109159
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
Polyhedral approximation of metric surfaces and applications to uniformization
度量曲面的多面体近似及其在均匀化中的应用
- DOI:10.1215/00127094-2022-0061
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Ntalampekos, Dimitrios;Romney, Matthew
- 通讯作者:Romney, Matthew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitrios Ntalampekos其他文献
Semi-hyperbolic rational maps and size of Fatou components
半双曲有理图和 Fatou 分量的大小
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
Non-removability of the Sierpiński gasket
Sierpiński 垫圈的不可拆卸性
- DOI:
10.1007/s00222-018-00852-3 - 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
On the inverse absolute continuity of quasiconformal mappings on hypersurfaces
超曲面上拟共形映射的逆绝对连续性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Dimitrios Ntalampekos;Matthew Romney - 通讯作者:
Matthew Romney
Lipschitz-Volume Rigidity and Sobolev Coarea Inequality for Metric Surfaces
公制曲面的 Lipschitz 体积刚度和 Sobolev 面积不等式
- DOI:
10.1007/s12220-024-01577-x - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Meier;Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
A removability theorem for Sobolev functions and detour sets
Sobolev 函数和绕行集的可移性定理
- DOI:
10.1007/s00209-019-02405-7 - 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
Dimitrios Ntalampekos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitrios Ntalampekos', 18)}}的其他基金
Uniformization and Rigidity in Metric Surfaces and in the Complex Plane
公制曲面和复平面中的均匀化和刚度
- 批准号:
2246485 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
相似国自然基金
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
粗监督时序轨道分析若干关键技术研究
- 批准号:60903035
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Geometric flows and analysis on metric spaces
几何流和度量空间分析
- 批准号:
2305397 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
- 批准号:
2311035 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Continuing Grant
Uniformization of Surfaces and Mapping Problems in Metric Spaces
度量空间中曲面的均匀化和映射问题
- 批准号:
2246894 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant