SaTC: CORE: Small: Cybersecurity Big Data Research for Hacker Communities: A Topic and Language Modeling Approach
SaTC:核心:小型:黑客社区的网络安全大数据研究:主题和语言建模方法
基本信息
- 批准号:1936370
- 负责人:
- 金额:$ 51.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is estimated that cybercrime costs the global economy around $445 billion annually, particularly due to intellectual property theft and financial fraud using stolen consumer data. Incidents of large-scale hacking and data theft occur regularly, with many cyberattacks resulting in theft of sensitive personal information or intellectual property. Cybersecurity will remain a critical problem for the foreseeable future, necessitating more research on a large, diverse, covert and evolving international hacker community. Computer science and social science researchers face non-trivial challenges, such as the technical difficulties in data collection and analytics, the massive volume of data collection, the heterogeneity and covert nature of data elements, and the ability to comprehend common hacker terms and concepts across regions. In order to alleviate these challenges, this project has two research goals: 1) advance current capabilities for scalable identification, collection, and analysis of international hacker community contents, and 2) make contributions to the cybersecurity community by developing new big data techniques that could enable researchers to conduct analyses on hacker content and other related domains. The impact of the project is made through the sharing and dissemination of our comprehensive hacker community data collection, advanced collection strategies, and innovative analytical approaches within the NSF Secure and Trustworthy Cyberspace data science and other communities.This project aims to develop a large, comprehensive and longitudinal testbed of all significant international online hacker community contents, including: forums, IRCs, underground economies, and other emerging hacker assets, for the cybersecurity and big data communities. The analytical approaches mainly aim to address the large-scale international hacker community content analysis for proactive cyber threat intelligence (CTI). In order to analyze hacker contents, the project develops an innovative, holistic, and proactive CTI framework encompassing Cross-Lingual Knowledge Transfer to alleviate the language barrier, Nonparametric Supervised Topic Modeling to profile key hacker assets, and Scalable Dynamic Topic Modeling to inform emerging threat detection. UA's National Security Agency-designated Center of Academic Excellence in Cyber Defense, Research, and Operations, NSF Scholarship-for-Service (SFS) Cyber-Corps, and top-ranked Master's in Cybersecurity programs position the project for synergy with teaching and research. Techniques developed in this project not only advance CTI knowledge, but also deep transfer learning, deep generative modeling, supervised topic modeling, dynamic topic modeling, neural variational inference, and numerous other important domains. Results from this research will be disseminated through various academic and cybersecurity industry channels such as undergraduate and graduate curricula, IEEE Intelligence and Security Informatics conference, National Cyber-Forensics Training Alliance (NCFTA), The Society for the Policing of Cyberspace (POLCYB), and NSF CyberCorps SFS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
据估计,网络犯罪每年给全球经济造成约 4,450 亿美元的损失,特别是由于知识产权盗窃和利用被盗消费者数据进行的金融欺诈。大规模黑客攻击和数据盗窃事件经常发生,许多网络攻击导致敏感个人信息或知识产权被盗。在可预见的未来,网络安全仍将是一个关键问题,需要对庞大、多样化、隐蔽和不断发展的国际黑客社区进行更多研究。计算机科学和社会科学研究人员面临着不小的挑战,例如数据收集和分析的技术困难、数据收集的海量、数据元素的异质性和隐蔽性,以及跨领域理解常见黑客术语和概念的能力。地区。为了缓解这些挑战,该项目有两个研究目标:1)提高当前可扩展识别、收集和分析国际黑客社区内容的能力,2)通过开发新的大数据技术为网络安全社区做出贡献使研究人员能够对黑客内容和其他相关领域进行分析。 该项目的影响是通过在 NSF 安全可信网络空间数据科学和其他社区内共享和传播我们全面的黑客社区数据收集、先进的收集策略和创新的分析方法来实现的。该项目旨在开发一个大型的、综合的所有重要国际在线黑客社区内容的纵向测试平台,包括:论坛、IRC、地下经济和其他新兴黑客资产,适用于网络安全和大数据社区。分析方法主要旨在解决大规模国际黑客社区内容分析的主动网络威胁情报(CTI)问题。为了分析黑客内容,该项目开发了一个创新、整体和主动的 CTI 框架,其中包括用于缓解语言障碍的跨语言知识转移、用于分析关键黑客资产的非参数监督主题建模以及用于通知新兴威胁的可扩展动态主题建模检测。 UA 的国家安全局指定的网络防御、研究和运营学术卓越中心、NSF 服务奖学金 (SFS) 网络军团以及一流的网络安全硕士项目使该项目与教学和研究产生协同作用。该项目开发的技术不仅推进了 CTI 知识,还推进了深度迁移学习、深度生成建模、监督主题建模、动态主题建模、神经变分推理以及许多其他重要领域。这项研究的结果将通过各种学术和网络安全行业渠道传播,例如本科生和研究生课程、IEEE 情报和安全信息学会议、国家网络取证培训联盟 (NCFTA)、网络空间警务协会 (POLCYB) 和NSF CyberCorps SFS。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Generative Adversarial Learning Framework for Breaking Text-Based CAPTCHA in the Dark Web
用于破解暗网中基于文本的验证码的生成对抗学习框架
- DOI:10.1109/isi49825.2020.9280537
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Zhang, Ning;Ebrahimi, Mohammadreza;Li, Weifeng;Chen, Hsinchun
- 通讯作者:Chen, Hsinchun
A Multi-Disciplinary Perspective for Conducting Artificial Intelligence-enabled Privacy Analytics: Connecting Data, Algorithms, and Systems
进行人工智能隐私分析的多学科视角:连接数据、算法和系统
- DOI:10.1145/3447507
- 发表时间:2021-03
- 期刊:
- 影响因子:2.5
- 作者:Samtani, Sagar;Kantarcioglu, Murat;Chen, Hsinchun
- 通讯作者:Chen, Hsinchun
Detecting Cyber Threats in Non-English Hacker Forums: An Adversarial Cross-Lingual Knowledge Transfer Approach
检测非英语黑客论坛中的网络威胁:对抗性跨语言知识转移方法
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Ebrahimi, M;Samtani, S;Chai, Y;Chen, H.
- 通讯作者:Chen, H.
Counteracting Dark Web Text-Based CAPTCHA with Generative Adversarial Learning for Proactive Cyber Threat Intelligence
通过生成对抗学习来对抗基于暗网文本的验证码,以实现主动网络威胁情报
- DOI:10.1145/3505226
- 发表时间:2022-06
- 期刊:
- 影响因子:2.5
- 作者:Zhang, Ning;Ebrahimi, Mohammadreza;Li, Weifeng;Chen, Hsinchun
- 通讯作者:Chen, Hsinchun
Identifying, Collecting, and Monitoring Personally Identifiable Information: From the Dark Web to the Surface Web
识别、收集和监控个人身份信息:从暗网到表面网
- DOI:10.1109/isi49825.2020.9280540
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Liu, Yizhi;Lin, Fang Yu;Ahmad;Ebrahimi, Mohammadreza;Zhang, Ning;Hu, James Lee;Xin, Jingyu;Li, Weifeng;Chen, Hsinchun
- 通讯作者:Chen, Hsinchun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hsinchun Chen其他文献
Terrorism Informatics: Knowledge Management and Data Mining for Homeland Security
恐怖主义信息学:国土安全知识管理和数据挖掘
- DOI:
- 发表时间:
2008-07-02 - 期刊:
- 影响因子:0
- 作者:
Hsinchun Chen;Edna Reid;Joshua Sinai;Andrew Silke;B. Ganor - 通讯作者:
B. Ganor
Detecting Cyber Threats in Non-English Hacker Forums: An Adversarial Cross-Lingual Knowledge Transfer Approach
检测非英语黑客论坛中的网络威胁:对抗性跨语言知识转移方法
- DOI:
10.1109/spw50608.2020.00021 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:0
- 作者:
Mohammadreza Ebrahimi;Sagar Samtani;Yidong Chai;Hsinchun Chen - 通讯作者:
Hsinchun Chen
Knowledge Management, Data Mining, and Text Mining in Medical Informatics
医学信息学中的知识管理、数据挖掘和文本挖掘
- DOI:
10.1007/0-387-25739-x_1 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Hsinchun Chen;S. Fuller;C. Friedman;W. Hersh - 通讯作者:
W. Hersh
HealthQA: A Chinese QA Summary System for Smart Health
HealthQA:中国智慧健康QA总结系统
- DOI:
10.1007/978-3-319-08416-9_6 - 发表时间:
2014-07-10 - 期刊:
- 影响因子:0
- 作者:
Y. Yin;Yong Zhang;Xiao Liu;Yan Zhang;Chunxiao Xing;Hsinchun Chen - 通讯作者:
Hsinchun Chen
Tracing Topic Discussions with the Event-Driven Sir Model for Online Forums
使用事件驱动的 Sir 模型跟踪在线论坛的主题讨论
- DOI:
- 发表时间:
2016-05-01 - 期刊:
- 影响因子:3.9
- 作者:
Jiyoung Woo;Sung;Hsinchun Chen - 通讯作者:
Hsinchun Chen
Hsinchun Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hsinchun Chen', 18)}}的其他基金
CICI: UCSS: Enhancing the Usability of Vulnerability Assessment Results for Open-Source Software Technologies in Scientific Cyberinfrastructure: A Deep Learning Perspective
CICI:UCSS:增强科学网络基础设施中开源软件技术漏洞评估结果的可用性:深度学习视角
- 批准号:
2319325 - 财政年份:2023
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Artificial Intelligence and Cybersecurity Research and Education at Scale
EAGER:SaTC-EDU:大规模人工智能和网络安全研究与教育
- 批准号:
2038483 - 财政年份:2020
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
CICI: SSC: Proactive Cyber Threat Intelligence and Comprehensive Network Monitoring for Scientific Cyberinfrastructure: The AZSecure Framework
CICI:SSC:科学网络基础设施的主动网络威胁情报和综合网络监控:AZSecure 框架
- 批准号:
1917117 - 财政年份:2019
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
Cybersecurity Scholarship-for-Service Renewal at The University of Arizona:The AZSecure SFS Program
亚利桑那大学网络安全服务更新奖学金:AZSecure SFS 计划
- 批准号:
1921485 - 财政年份:2019
- 资助金额:
$ 51.06万 - 项目类别:
Continuing Grant
EAGER: A Longitudinal Study of Knowledge Diffusion and Societal Impact of Nanomanufacturing Research & Development: Harnessing Data for Science and Engineering
EAGER:纳米制造研究的知识传播和社会影响的纵向研究
- 批准号:
1832926 - 财政年份:2018
- 资助金额:
$ 51.06万 - 项目类别:
Continuing Grant
EAGER: A Longitudinal Study of Knowledge Diffusion and Societal Impact of Nanomanufacturing Research & Development: Harnessing Data for Science and Engineering
EAGER:纳米制造研究的知识传播和社会影响的纵向研究
- 批准号:
1832926 - 财政年份:2018
- 资助金额:
$ 51.06万 - 项目类别:
Continuing Grant
Cybersecurity Big Data and Analytics Sharing Platform
网络安全大数据和分析共享平台
- 批准号:
1719477 - 财政年份:2017
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
EAGER: A Systems Approach for Identification and Evaluation of Nanoscience and Nanomanufacturing Opportunities and Risks
EAGER:识别和评估纳米科学和纳米制造机会和风险的系统方法
- 批准号:
1442116 - 财政年份:2014
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
CIF21 DIBBs: DIBBs for Intelligence and Security Informatics Research Community
CIF21 DIBB:用于情报和安全信息学研究社区的 DIBB
- 批准号:
1443019 - 财政年份:2014
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
SBE TTP: Medium: Securing Cyber Space: Understanding the Cyber Attackers and Attacks via Social Media Analytics
SBE TTP:媒介:保护网络空间:通过社交媒体分析了解网络攻击者和攻击
- 批准号:
1314631 - 财政年份:2013
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
相似国自然基金
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 51.06万 - 项目类别:
Continuing Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 51.06万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 51.06万 - 项目类别:
Standard Grant