CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
基本信息
- 批准号:2247114
- 负责人:
- 金额:$ 28.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Analyzing how information is encoded in the state of a quantum system is fundamental to understanding a wide range of physical phenomena and has the potential to enhance a growing array of applications in computing, engineering, and technology. In this project, tools from the mathematical fields of functional analysis, operator algebras and quantum probability will be developed with the aim of exploring connections to quantum information theory. The theory of operator algebras provides a framework for many aspects of quantum mechanics. Combined with concepts from quantum information theory, operator algebraic methods may provide insight into a variety of phenomena, including the entropy of a system, the properties of many-body systems, and black holes. The work of the PI includes collaboration with IQUIST, a quantum institute at the University of Illinois, and is part of an interdisciplinary effort to build a quantum workforce which can tackle the new challenges of quantum computation and infinite-dimensional aspects of quantum mechanics. The PI will provide summer support for graduate students and maintain a diverse, interdisciplinary research group. The PI plans to coordinate a learning seminar, new course offerings, and other project opportunities (in cooperation with the Illinois Geometry Lab, IQUIST, and Quantum Exchange Chicago) with the goal of bridging the gap between the theoretical and practical aspects of quantum information science. The work supported by this award is motivated by dynamical aspects in quantum information theory and operator algebra theory. This research will simultaneously deepen the current understanding of fundamental properties in von Neumann algebra, provide computational aspects of algebraic quantum field theory and provide powerful inequalities for entropy decay in quantum information theory. The outcomes of the proposed research in operator algebras are highly interdisciplinary, including work on quantum circuits, many-body systems and potential applications on modeling area laws for black holes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分析信息在量子系统状态下的编码方式对于理解各种物理现象至关重要,并且有可能增强计算、工程和技术领域不断增长的应用。 在该项目中,将开发泛函分析、算子代数和量子概率等数学领域的工具,旨在探索与量子信息论的联系。 算子代数理论为量子力学的许多方面提供了框架。结合量子信息论的概念,算子代数方法可以深入了解各种现象,包括系统的熵、多体系统的属性和黑洞。 PI 的工作包括与伊利诺伊大学量子研究所 IQUIST 的合作,是建立量子团队的跨学科努力的一部分,该团队可以应对量子计算和量子力学无限维方面的新挑战。 PI 将为研究生提供暑期支持,并维持一个多元化、跨学科的研究小组。 PI 计划协调学习研讨会、新课程和其他项目机会(与伊利诺伊州几何实验室、IQUIST 和芝加哥量子交换中心合作),目标是弥合量子信息科学理论和实践方面的差距。 该奖项支持的工作是由量子信息论和算子代数理论的动力学方面推动的。 这项研究将同时加深目前对冯·诺依曼代数基本性质的理解,提供代数量子场论的计算方面,并为量子信息论中的熵衰减提供强大的不等式。拟议的算子代数研究成果是高度跨学科的,包括量子电路、多体系统以及黑洞面积定律建模的潜在应用方面的工作。该奖项反映了 NSF 的法定使命,并被认为值得通过使用评估来支持基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Junge其他文献
On a question of Blecher, Pisier, Shlyakhtenko
关于 Blecher、Pisier、Shlyakhtenko 的问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Roy Araiza;Marius Junge;C. Palazuelos - 通讯作者:
C. Palazuelos
Marius Junge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Junge', 18)}}的其他基金
Operator Algebra Theory in Applications
算子代数理论的应用
- 批准号:
1800872 - 财政年份:2018
- 资助金额:
$ 28.87万 - 项目类别:
Continuing Grant
Great Plains Operator Theory Symposium (GPOTS) 2016
大平原算子理论研讨会 (GPOTS) 2016
- 批准号:
1566648 - 财政年份:2016
- 资助金额:
$ 28.87万 - 项目类别:
Standard Grant
Operator algebras between theory and application
理论与应用之间的算子代数
- 批准号:
1501103 - 财政年份:2015
- 资助金额:
$ 28.87万 - 项目类别:
Continuing Grant
Applications of operator algebra theory to certain problems in analysis
算子代数理论在某些分析问题中的应用
- 批准号:
0901457 - 财政年份:2009
- 资助金额:
$ 28.87万 - 项目类别:
Continuing Grant
Noncommutative Hardy Spaces and Littlewood-Paley Theory
非交换 Hardy 空间和 Littlewood-Paley 理论
- 批准号:
0901009 - 财政年份:2009
- 资助金额:
$ 28.87万 - 项目类别:
Standard Grant
Quantum Probabilistic Methods in Operator Spaces and Applications
算子空间中的量子概率方法及其应用
- 批准号:
0556120 - 财政年份:2006
- 资助金额:
$ 28.87万 - 项目类别:
Standard Grant
Lp Estimates in Non-commutative Probability and Analysis
非交换概率和分析中的 Lp 估计
- 批准号:
0301116 - 财政年份:2003
- 资助金额:
$ 28.87万 - 项目类别:
Standard Grant
Non-commutative Lp-spaces and their Connection to Probability and Operator Spaces
非交换 Lp 空间及其与概率和算子空间的联系
- 批准号:
0088928 - 财政年份:2000
- 资助金额:
$ 28.87万 - 项目类别:
Standard Grant
相似国自然基金
基于共享控制的遥操作员技能“导师在环”式高效训练方法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于声呐操作员大脑识别声信号神经机制特性的水下目标特征提取与自动识别研究
- 批准号:91748105
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:重大研究计划
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
复杂人机系统的智能化建模与控制理论研究
- 批准号:61075070
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
基于操作员功能状态实时监测的复杂人机系统适应性自动化
- 批准号:60775033
- 批准年份:2007
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
Studying generalised Thompson's group with tools from geometric group theory and operator algebra
使用几何群论和算子代数的工具研究广义汤普森群
- 批准号:
EP/W007371/1 - 财政年份:2022
- 资助金额:
$ 28.87万 - 项目类别:
Research Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 28.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New directions in vertex algebras and moonshine
顶点代数和 Moonshine 的新方向
- 批准号:
22K03264 - 财政年份:2022
- 资助金额:
$ 28.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Noncommutative Functions, Algebra and Operator Analysis
非交换函数、代数和算子分析
- 批准号:
2155033 - 财政年份:2022
- 资助金额:
$ 28.87万 - 项目类别:
Standard Grant
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
- 批准号:
21K03195 - 财政年份:2021
- 资助金额:
$ 28.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)