Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization

协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性

基本信息

  • 批准号:
    1955703
  • 负责人:
  • 金额:
    $ 61.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Algorithmic decision-making is ubiquitous in the modern era. Our society uses algorithms to solve problems ranging from making investment decisions in personal financial planning, to allocating resources in large-scale computing systems such as data centers. Often, these problems are difficult because of uncertainty about the future. In algorithmic theory, traditionally conservative approaches are used which provide relatively weak but highly robust guarantees that hold no matter how the future unfolds. In practice, a more promising alternative is the use of machine-learning techniques to make algorithmic choices for the future based on knowledge of past data. By implicitly assuming that the future will mirror the past, one can provide stronger guarantees and better empirical performance. However, the "worst-case" robustness of the previous approach is not available, which is important if the implicit assumption of 'past predicts the future' no longer holds true. This project seeks to combine the two approaches and get the best of both worlds by exploring the interface between algorithm design and machine learning. The end goal is a comprehensive toolbox for algorithmic decision-making under uncertainty that is both robust and has good performance. In addition to this research component, the project will train graduate and undergraduate researchers in theoretical computer science, with an emphasis on participation of underrepresented groups.The investigators' approach is to rethink each of these individual toolboxes to take advantage of the other -- namely incorporating machine-learned advice in algorithm design, and conversely, training machine learning models for algorithmic objectives. The main intellectual thrust of this project is to use machine-learned predictions to improve the quality of algorithms, and conversely, to design learning models that can be specifically trained for optimization objectives. This will be explored in two main directions: the first part considers Machine Learning as a Black Box. Here, the optimization algorithm merely consumes the predictions from the learning model. This is often the case in practice, particularly when the predictions are generated by complex systems such as deep neural networks. In this case, the focus will be on ensuring that we do not over-fit the predictions, on deciding what input parameters to predict in the first place, and on choosing between multiple alternative prediction models based on their relative accuracy, reliability, and costs. In the second part (Machine Learning as a White Box), the focus is on a more integrated design, where the optimization algorithm interacts with the learning model at runtime and ask adaptives queries. More ambitiously, the project explores a significant redesign of the end-to-end system, including the learning models and the optimization algorithms, for specific optimization tasks. This work will rely on techniques from online algorithms, stochastic and robust optimization, and learning theory, and build connections between these fields to address the central questions of algorithmic decision making under uncertainty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算法决策在现代时代无处不在。我们的社会使用算法来解决从个人财务计划中的投资决策到在大规模计算系统(例如数据中心)中的资源等问题。通常,由于对未来的不确定性,这些问题很困难。在算法理论中,使用传统上保守的方法,这些方法可提供相对较弱但高度强大的保证,无论未来如何发展,都可以保证。实际上,一个更有希望的替代方法是使用机器学习技术根据过去数据的知识为未来做出算法选择。通过隐式假设未来会反映过去,人们可以提供更强大的保证和更好的经验绩效。但是,先前方法的“最坏”鲁棒性不可用,这很重要,如果“过去预测未来”的隐含假设不再是正确的。该项目旨在结合两种方法,并通过探索算法设计和机器学习之间的界面来获得两全其美。最终目标是在不确定性下进行算法决策制定的全面工具箱,既强大又具有良好的性能。除了该研究组件外,该项目还将培训理论计算机科学领域的毕业生和本科研究人员,重点是参与代表性不足的组。研究人员的方法是重新考虑这些单独的工具箱,以利用其他工具箱 - 即将机器学习的建议纳入算法设计中,相反,训练机器学习模型为算法目标。该项目的主要智力推力是使用机器学习的预测来提高算法的质量,相反,设计可以专门培训以进行优化目标的学习模型。这将在两个主要方向上进行探讨:第一部分将机器学习视为黑匣子。在这里,优化算法仅消耗学习模型中的预测。在实践中通常是这种情况,尤其是当预测是由复杂系统(例如深神经网络)产生的。在这种情况下,重点将是确保我们不要过度拟合预测,决定首先要预测的输入参数,并根据其相对准确性,可靠性和成本在多个替代预测模型之间进行选择。在第二部分中(机器学习为白框),重点是更集成的设计,在此期间,优化算法在运行时与学习模型相互作用并询问自适应剂查询。该项目更加雄心勃勃地探讨了端到端系统的重大重新设计,包括学习模型和优化算法,用于特定的优化任务。这项工作将依靠在线算法,随机和强大的优化以及学习理论以及在这些领域之间建立联系以解决不确定性下算法决策的主要问题。该奖项反映了NSF的法定任务,并被认为是值得支持的支持,通过使用基金会的智力优点和更广泛影响的评论标准进行评估。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online Combinatorial Auctions
在线组合拍卖
Online Graph Algorithms with Predictions
  • DOI:
    10.1137/1.9781611977073.3
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Azar;Debmalya Panigrahi;Noam Touitou
  • 通讯作者:
    Y. Azar;Debmalya Panigrahi;Noam Touitou
Online Paging with Heterogeneous Cache Slots
  • DOI:
    10.48550/arxiv.2206.05579
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Chrobak;Samuel Haney;Mehraneh Liaee;Debmalya Panigrahi;R. Rajaraman;Ravi Sundaram;N. Young
  • 通讯作者:
    M. Chrobak;Samuel Haney;Mehraneh Liaee;Debmalya Panigrahi;R. Rajaraman;Ravi Sundaram;N. Young
Customizing ML Predictions for Online Algorithms
  • DOI:
    10.48550/arxiv.2205.08715
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keerti Anand;Rong Ge;Debmalya Panigrahi
  • 通讯作者:
    Keerti Anand;Rong Ge;Debmalya Panigrahi
Online Algorithms for Weighted Paging with Predictions
  • DOI:
    10.1145/3548774
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihao Jiang;Debmalya Panigrahi;Kevin Sun
  • 通讯作者:
    Zhihao Jiang;Debmalya Panigrahi;Kevin Sun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debmalya Panigrahi其他文献

Beyond the Quadratic Time Barrier for Network Unreliability
超越网络不可靠性的二次时间障碍
  • DOI:
    10.48550/arxiv.2304.06552
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruoxu Cen;W. He;Jason Li;Debmalya Panigrahi
  • 通讯作者:
    Debmalya Panigrahi
2 A Primal-Dual Algorithm for Steiner Forest
2 Steiner森林的原对偶算法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Debmalya Panigrahi;Kevin Sun
  • 通讯作者:
    Kevin Sun
Online Node-Weighted Steiner Forest and Extensions via Disk Paintings
在线节点加权斯坦纳森林和通过磁盘绘画的扩展
Random Contractions and Sampling for Hypergraph and Hedge Connectivity
超图和对冲连接的随机收缩和采样
Max-Cut with ε-Accurate Predictions
具有 ε 准确预测的最大割断
  • DOI:
    10.48550/arxiv.2402.18263
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vincent Cohen;Tommaso d'Orsi;Anupam Gupta;Euiwoong Lee;Debmalya Panigrahi
  • 通讯作者:
    Debmalya Panigrahi

Debmalya Panigrahi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debmalya Panigrahi', 18)}}的其他基金

AF: Small: Algorithms for Graph Cuts
AF:小:图割算法
  • 批准号:
    2329230
  • 财政年份:
    2023
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Standard Grant
Conference: Workshop on Learning-augmented Algorithms
会议:学习增强算法研讨会
  • 批准号:
    2239610
  • 财政年份:
    2022
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Standard Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
  • 批准号:
    1750140
  • 财政年份:
    2018
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Continuing Grant
AF: Small: Allocation Algorithms in Online Systems
AF:小型:在线系统中的分配算法
  • 批准号:
    1527084
  • 财政年份:
    2015
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Standard Grant

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 61.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了