AF: Small: Allocation Algorithms in Online Systems
AF:小型:在线系统中的分配算法
基本信息
- 批准号:1527084
- 负责人:
- 金额:$ 41.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, the Internet has undergone explosive growth --- in the number of users and connected devices, volume of traffic, geographical reach, and diversity of services --- and its role in enriching modern human societies is indisputable. Two key contributors to this growth and success are: (a) the unique economic model of the Internet that predominantly relies on advertising revenues instead of paid services thereby allowing multitudes of users affordable access to online services such as email and search, and connectivity via social networks; and (b) the large-scale computing infrastructure based on massive data centers capable of providing computing and connectivity services to billions of users across the globe at any given time. The success of these critical components of the Internet revolution is contingent on the development of efficient allocation algorithms --- for deciding which advertisement an ad exchange should show an online user to maximize the user's utility and generate revenue, and for scheduling user service requests on the available resources such as processors, storage devices, and network elements in a data center. In this project, the PI will develop novel algorithmic tools and techniques to address these problems, thereby advancing the state of the art in algorithmic research. Moreover, the PI will regularly consult with practitioners to create opportunities for technology transfer in Internet applications. This project will also train graduate and undergraduate researchers in algorithms and theoretical computer science, with a focus on problems motivated by real world applications.Allocation problems in large online systems have emerged as a vibrant area of research. In this project, the focus is on two important domains: scheduling and load balancing with applications to data center management, and online matching and budgeted allocation with applications to Internet advertising. Both application domains have been at the forefront of the Internet revolution and have grown into multi-billion dollar industries. Moreover, from a technical perspective, these problems are characterized by some of the key challenges in modern algorithm design for real world problems: uncertainty and incompleteness of input data, the existence of multiple simultaneous objectives, and non-linear optimization requirements. This project will address technical problems in the above-mentioned application domains that exhibit one or more of these characteristics. Specific problems to be considered include vector scheduling and load balancing, online convex optimization and applications to non-linear scheduling objectives, multi-objective and stochastic versions of budgeted allocation and online matching problems, etc. The successful completion of this project will yield an algorithmic toolkit for allocation problems motivated by real world applications on the Internet.
近年来,互联网在用户数量和连接设备数量、流量、地理覆盖范围和服务多样性方面经历了爆炸性增长,其在丰富现代人类社会方面的作用是无可争议的。这种增长和成功的两个关键因素是:(a) 互联网独特的经济模式,主要依赖于广告收入而不是付费服务,从而使大量用户能够负担得起电子邮件和搜索等在线服务,并通过社交媒体进行连接网络; (b) 基于海量数据中心的大规模计算基础设施,能够在任何给定时间向全球数十亿用户提供计算和连接服务。互联网革命的这些关键组成部分的成功取决于高效分配算法的开发——用于决定广告交易平台应向在线用户展示哪些广告以最大化用户的效用并产生收入,以及用于调度用户服务请求数据中心中的可用资源,例如处理器、存储设备和网络元素。在这个项目中,PI 将开发新颖的算法工具和技术来解决这些问题,从而推进算法研究的最先进水平。此外,PI还将定期与从业者进行磋商,为互联网应用技术转移创造机会。该项目还将培训算法和理论计算机科学领域的研究生和本科生研究人员,重点关注现实世界应用引发的问题。大型在线系统中的分配问题已成为一个充满活力的研究领域。在这个项目中,重点是两个重要领域:数据中心管理应用程序的调度和负载平衡,以及互联网广告应用程序的在线匹配和预算分配。这两个应用领域都处于互联网革命的前沿,并已发展成为价值数十亿美元的产业。此外,从技术角度来看,这些问题的特点是现代算法设计中针对现实世界问题的一些关键挑战:输入数据的不确定性和不完整性、多个同时目标的存在以及非线性优化要求。该项目将解决上述应用领域中表现出一个或多个这些特征的技术问题。具体需要考虑的问题包括向量调度和负载均衡、在线凸优化及其在非线性调度目标中的应用、预算分配的多目标和随机版本以及在线匹配问题等。该项目的成功完成将产生一个算法用于解决由互联网上的现实世界应用程序引发的分配问题的工具包。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debmalya Panigrahi其他文献
Beyond the Quadratic Time Barrier for Network Unreliability
超越网络不可靠性的二次时间障碍
- DOI:
10.48550/arxiv.2304.06552 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ruoxu Cen;W. He;Jason Li;Debmalya Panigrahi - 通讯作者:
Debmalya Panigrahi
2 A Primal-Dual Algorithm for Steiner Forest
2 Steiner森林的原对偶算法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Debmalya Panigrahi;Kevin Sun - 通讯作者:
Kevin Sun
Online Node-Weighted Steiner Forest and Extensions via Disk Paintings
在线节点加权斯坦纳森林和通过磁盘绘画的扩展
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Hajiaghayi;Vahid Liaghat;Debmalya Panigrahi - 通讯作者:
Debmalya Panigrahi
Random Contractions and Sampling for Hypergraph and Hedge Connectivity
超图和对冲连接的随机收缩和采样
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Ghaffari;David R Karger;Debmalya Panigrahi - 通讯作者:
Debmalya Panigrahi
Near-Optimal Online Algorithms for Prize-Collecting Steiner Problems
收奖斯坦纳问题的近最优在线算法
- DOI:
10.1007/978-3-662-43948-7_48 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. Hajiaghayi;Vahid Liaghat;Debmalya Panigrahi - 通讯作者:
Debmalya Panigrahi
Debmalya Panigrahi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debmalya Panigrahi', 18)}}的其他基金
Conference: Workshop on Learning-augmented Algorithms
会议:学习增强算法研讨会
- 批准号:
2239610 - 财政年份:2022
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
1955703 - 财政年份:2020
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
- 批准号:
1750140 - 财政年份:2018
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
相似国自然基金
土地利用类型对喀斯特小流域汞关键再分配过程的影响研究
- 批准号:42107497
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于长链非编码RNA00052吸附机制探讨桔梗协同白芥子组分配伍抑制非小细胞肺癌侵袭与转移的分子机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
高温介导葡糖脱氢酶Glucose dehydrogenase (GLD)在班氏跳小蜂性别分配中的作用机制
- 批准号:31801801
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
D2D使能的毫米波小蜂窝子信道分配机制研究
- 批准号:61801016
- 批准年份:2018
- 资助金额:25.5 万元
- 项目类别:青年科学基金项目
自复寄生蜂浅黄恩蚜小蜂性别分配的行为调控机理
- 批准号:31672087
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
AF:RI:Small: Fairness in allocation and machine learning problems: algorithms and solution concepts
AF:RI:Small:分配公平性和机器学习问题:算法和解决方案概念
- 批准号:
2334461 - 财政年份:2024
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
- 批准号:
2335187 - 财政年份:2024
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
RI: Small: The Surprising Power of Sequential Fair Allocation Mechanisms
RI:小:顺序公平分配机制的惊人力量
- 批准号:
2327057 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Identification of plasma lipoprotein proteins and lipids as biomarkers of innate-immunity and vascular contributions to Alzheimer's disease and Alzheimer's disease-related dementias in older adults
鉴定血浆脂蛋白和脂质作为老年人阿尔茨海默病和阿尔茨海默病相关痴呆的先天免疫和血管贡献的生物标志物
- 批准号:
10660037 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
The SE-Learn Online Professional Development Platform for Enhanced Social Emotional Learning with Students
SE-Learn 在线专业发展平台,增强学生的社交情感学习
- 批准号:
10601591 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别: