CAS: Mechanistic Study of Reaction Intermediates in Nanoparticle-Enhanced Plasma-Assisted Catalysis

CAS:纳米粒子增强等离子体辅助催化反应中间体的机理研究

基本信息

  • 批准号:
    1954834
  • 负责人:
  • 金额:
    $ 31.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Toxic gases such as nitrogen oxides (NOx) and sulfur oxides (SOx), produced by the burning of fossil fuels, give rise to smog and acid rain. Converting these harmful pollutants to safer by-products is a significant and important challenge. In this project, with funding from the Chemical Catalysis Program of the Division of Chemistry, Dr. Stephen Cronin of the University of Southern California is investigating plasma-driven catalysis as a way to eliminate these pollutants. Catalysts are substances that accelerate chemical reactions without themselves being consumed. Catalysts require energy to function, and the research team is investigating plasmas (the low temperature, glowing gas in fluorescent lamps is an example of plasma) to deliver that energy. The fundamental knowledge gained in this work enables improved systems for remediating these harmful pollutants. The specialized techniques used to investigate plasma-driven chemical reactions can also be applied to a wide range of other catalytic reactions. Dr. Cronin is actively engaged in outreach activities that build upon his research to promote engagement of students in science, technology, engineering and mathematics (STEM) disciplines. These activities, which include a workshop for high school science teachers, are directed at improving the education of promising high school students and encouraging their interest in STEM careers. With funding from the Chemical Catalysis Program of the Division of Chemistry, Dr. Cronin of the University of Southern California is studying the vibrational signatures of key reaction intermediates using in situ attenuated total reflection (ATR)-FTIR spectroscopy. Here, a hot-electron, low-temperature transient pulsed plasma is generated using nanosecond high voltage pulses across a substrate containing nanoparticles (e.g., Pt, Ag, Au). These nanoparticles provide up to 1000X enhancement in the generation of the plasma, which is localized to the surface of the nanoparticles where it is most useful for catalysis. The low-temperature nature of this transient plasma is crucial to maintaining the structural integrity of these delicate nanoparticles and would not be possible with a conventional radio frequency (RF) plasma. Dr. Cronin and his group explore several test reaction systems, including NO, NO2, and SO2 remediation. While these reactions have all been demonstrated using plasma-based processes, the detailed chemical pathways of these plasma-assisted reactions are not well understood. While other forms of spectroscopy have been performed extensively on plasmas (e.g., LIF spectroscopy), ATR-FTIR is an inherently surface-sensitive spectroscopy that provides new insights into the plasma-driven catalytic reaction mechanisms through the elucidation of key intermediate species. By identifying surface intermediates using several different types of metal nanoparticle surfaces (e.g., Cu, Ni, Pt), Dr. Cronin and his group test several hypothetical chemical pathways in both the gas and liquid phases. For example, one hypothesis is that SO2 remediation is driven by OH radicals (i.e., SO2 → HSO3 → H2SO4), which can be produced by the plasma. Dr. Cronin is actively engaged in STEM outreach programs focused on female student recruitment into the STEM fields and in high school student research internships, in support of the broader impacts of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过燃烧化石燃料产生的有毒气体,例如氮氧化物(NOX)和硫氧化物(SOX),会产生烟雾和酸雨。将这些有害污染物转换为更安全的副产品是一个重大而重要的挑战。在该项目中,通过化学划分的化学催化计划的资金,南加州大学的斯蒂芬·克罗宁博士正在研究血浆驱动的催化,以消除这些污染物。催化剂是加速化学反应而不会消耗的物质。催化剂需要能量运行,研究团队正在研究平原(低温,荧光灯中的发光气体是等离子体的一个例子)来传递该能量。这项工作中获得的基本知识可以改进的系统来修复这些有害的污染物。用于研究等离子体驱动的化学反应的专门技术也可以应用于其他广泛的催化反应。克罗宁博士正在积极从事宣传活动,以他的研究为基础,以促进学生参与科学,技术,工程和数学(STEM)学科。这些活动包括针对高中科学老师的研讨会,旨在改善有前途的高中生的教育,并鼓励他们对STEM职业的兴趣。随着化学级化学催化计划的资金,南加州大学的克罗宁博士正在研究使用原位减弱总反射(ATR) - ftir光谱的关键反应中间体的振动特征。在这里,使用纳秒高电压脉冲跨含有纳米颗粒的基质(例如PT,AG,AU),使用纳秒高电压脉冲来生成热电子,低温瞬态脉冲等离子体。这些纳米颗粒可在血浆的产生中提供高达1000倍的增强,该等离子体位于纳米颗粒表面,在该表面最有用,在纳米颗粒的表面上。这种瞬时等离子体的低温性对于维持这些细腻的纳米颗粒的结构完整性至关重要,并且使用常规射频(RF)等离子体不可能。 Cronin博士及其小组探索了几种测试反应系统,包括NO,NO2和SO2修复。尽管这些反应都使用基于等离子体的过程证明了这些反应,但这些血浆辅助反应的详细化学途径尚不清楚。尽管其他形式的光谱法在等离子体(例如LIF光谱法)上进行了广泛进行,但ATR-FTIR是一种固有的表面敏感光谱法,通过阐明关键中间物种的阐明,为血浆驱动的催化反应机制提供了新的见解。通过使用几种不同类型的金属纳米颗粒表面(例如Cu,Ni,Pt)鉴定表面中间体,Cronin博士及其小组在气体和液相中测试了几种假设的化学途径。例如,一个假设是SO2修复是由OH自由基驱动的(即SO2→HSO3→H2SO4),可以由等离子体产生。 Cronin博士积极从事专注于女性学生招募STEM领域和高中学生研究实习的STEM外展计划,以支持该项目的广泛影响。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和广泛影响的评估来通过评估来支持的珍贵的支​​持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Voltage-induced modulation in the charge state of Si-vacancy defects in diamond using high voltage nanosecond pulses
使用高压纳秒脉冲对金刚石中硅空位缺陷的电荷状态进行电压感应调制
  • DOI:
    10.1063/5.0066537
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Weng, Sizhe;Coleman, Christopher;Aravind, Indu;Wang, Yu;Zhao, Bofan;Cronin, Stephen B.
  • 通讯作者:
    Cronin, Stephen B.
Au Nanoparticle Enhancement of Plasma-Driven Methane Conversion into Higher Order Hydrocarbons via Hot Electrons
金纳米粒子通过热电子增强等离子体驱动的甲烷转化为高阶碳氢化合物
  • DOI:
    10.1021/acsanm.0c02912
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Zhao, Bofan;Aravind, Indu;Yang, Sisi;Wang, Yu;Li, Ruoxi;Cronin, Stephen B.
  • 通讯作者:
    Cronin, Stephen B.
Enhanced Plasma Generation from Metal Nanostructures via Photoexcited Hot Electrons
  • DOI:
    10.1021/acs.jpcc.1c00765
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bofan Zhao;Indu Aravind;Sisi Yang;Y. Wang;Ruoxi Li;Boxin Zhang;Yi Wang;J. Dawlaty;S. Cronin
  • 通讯作者:
    Bofan Zhao;Indu Aravind;Sisi Yang;Y. Wang;Ruoxi Li;Boxin Zhang;Yi Wang;J. Dawlaty;S. Cronin
Plasma-enhanced electrostatic precipitation of diesel exhaust particulates using nanosecond high voltage pulse discharge for mobile source emission control
利用纳秒高压脉冲放电对柴油机尾气颗粒物进行等离子体增强静电沉淀,用于移动源排放控制
  • DOI:
    10.1016/j.scitotenv.2022.158181
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zhang, Boxin;Aravind, Indu;Yang, Sisi;Weng, Sizhe;Zhao, Bofan;Schroeder, Christi;Schroeder, William;Thomas, Mark;Umstattd, Ryan;Singleton, Dan
  • 通讯作者:
    Singleton, Dan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Cronin其他文献

Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes
准金属超净悬浮碳纳米管中结构相变和大有效带隙的证据
  • DOI:
    10.1007/s12274-013-0351-5
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Shun-Wen Chang;Rohan Dhall;Moh Amer;Kentaro Sato;Riichiro Saito;Stephen Cronin
  • 通讯作者:
    Stephen Cronin

Stephen Cronin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Cronin', 18)}}的其他基金

Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring thermionic multiple barrier heterostructures and thermoelectric energy conversion using 2D layered heterostructures
合作研究:利用二维层状异质结构探索热离子多重势垒异质结构和热电能量转换
  • 批准号:
    2323031
  • 财政年份:
    2023
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
  • 批准号:
    2204667
  • 财政年份:
    2022
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
  • 批准号:
    2112898
  • 财政年份:
    2021
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Mechanistic Pathways of Surface Catalysis using SERS Spectroscopy: A Joint Theoretical and Experimental Synergistic Approach
合作研究:使用 SERS 光谱的表面催化的详细机理路径:理论和实验联合协同方法
  • 批准号:
    2106480
  • 财政年份:
    2021
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Collaborative Research: In Situ Surface Spectroscopy of 2D Material-based Electrocatalysis and Photoelectrocatalysis
合作研究:二维材料电催化和光电催化的原位表面光谱
  • 批准号:
    2012845
  • 财政年份:
    2020
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Cross-plane and In-plane Transport in 2D Layered Heterostructures
合作研究:了解二维层状异质结构中的跨平面和面内传输
  • 批准号:
    1905357
  • 财政年份:
    2019
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Collaborative Research: A Mechanistic Study of Chemical Enhancement in Surface Enhanced Raman Spectroscopy and Graphene Enhanced Raman Spectroscopy
合作研究:表面增强拉曼光谱和石墨烯增强拉曼光谱化学增强的机理研究
  • 批准号:
    1708581
  • 财政年份:
    2017
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Continuing Grant
UNS:Novel Photocatalysts based on TiO2-Passivated III-V Compounds for CO2 Reduction
UNS:基于 TiO2 钝化 III-V 族化合物的新型光催化剂,用于 CO2 还原
  • 批准号:
    1512505
  • 财政年份:
    2015
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Fifteenth International Conference on the Science and Application of Nanotubes
第十五届国际纳米管科学与应用会议
  • 批准号:
    1430099
  • 财政年份:
    2014
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant

相似国自然基金

机理模型与数据混合驱动的空间遥操作学习控制方法研究
  • 批准号:
    62373305
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
车路云协同系统下基于机器学习的自适应信任评估机理研究
  • 批准号:
    62362030
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于网络科学的学习认知机理及超图认知诊断技术研究
  • 批准号:
    62377022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
时序变化图像中工人不安全状态的场景-要素耦合机理、知识建模及自学习感知算法
  • 批准号:
    52308314
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于内嵌机理约束机器学习的生物质气化炉性能预测及交互调控
  • 批准号:
    52306230
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Resource Core B - Modeling of skin disease for mechanistic analysis and therapeutic discovery
资源核心 B - 用于机制分析和治疗发现的皮肤病建模
  • 批准号:
    10676785
  • 财政年份:
    2021
  • 资助金额:
    $ 31.1万
  • 项目类别:
Functional and Mechanistic Dissection of GPCR Endosomal Signaling Dynamics
GPCR 内体信号动力学的功能和机制解析
  • 批准号:
    10368945
  • 财政年份:
    2021
  • 资助金额:
    $ 31.1万
  • 项目类别:
Resource Core B - Modeling of skin disease for mechanistic analysis and therapeutic discovery
资源核心 B - 用于机制分析和治疗发现的皮肤病建模
  • 批准号:
    10463723
  • 财政年份:
    2021
  • 资助金额:
    $ 31.1万
  • 项目类别:
Therapeutic and Mechanistic Evaluation of Cannabis sativa Terpenes in Neuropathic Pain
大麻萜烯治疗神经性疼痛的治疗和机制评价
  • 批准号:
    10441501
  • 财政年份:
    2021
  • 资助金额:
    $ 31.1万
  • 项目类别:
Therapeutic and Mechanistic Evaluation of Cannabis sativa Terpenes in Neuropathic Pain
大麻萜烯治疗神经性疼痛的治疗和机制评价
  • 批准号:
    10600001
  • 财政年份:
    2021
  • 资助金额:
    $ 31.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了