Collaborative Research: Exploring thermionic multiple barrier heterostructures and thermoelectric energy conversion using 2D layered heterostructures
合作研究:利用二维层状异质结构探索热离子多重势垒异质结构和热电能量转换
基本信息
- 批准号:2323031
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Solid-state thermionic energy conversion has been predicted to be more efficient than conventional thermoelectric energy conversion based on bulk Peltier and Seebeck effects, if the thermionic barriers can be properly engineered. However, there have been relatively few experimental studies on solid-state thermionic energy conversion, mainly because of the difficulty of fabricating interfaces with the appropriate energy barriers, characterizing thermal transport across these interfaces, and separating the bulk thermoelectric properties from the interfacial properties. The proposed 2D Layered heterostructures enable these difficulties to be overcome and can potentially create a paradigm shift in the design of thermoelectric power generators and coolers with high efficiency. The project will also encompass significant educational activities, including an undergraduate research program and an outreach workshop for high school science teachers.The goal of the study is to develop a fundamental understanding of thermionic transport and energy conversion in multiple-barrier heterostructures using 2D-layered materials. Since the thermionic barriers must be thin, each barrier can have only a small temperature difference across it. Hence, macroscopic cooling and power generation needs to be obtained using multistage devices. In the proposed work, heterostructures are synthesized by physical vapor deposition (PVD), which can be used to produce heterostructures with hundreds of periods quite easily. These structures would be nearly impossible to fabricate by mechanical exfoliation. Unlike molecular beam epitaxy (MBE), the material synthesis approach proposed here is liftoff-compatible, enabling reliable measurements of cross-plane transport phenomena (electrical, thermal, and thermoelectric) using a new approach developed in the PIs’ labs. This new cross-plane measurement approach together with the configurable nanoarchitecture (i.e., layer thicknesses and total thickness) will enable the bulk and interfacial (i.e., thermionic emission) contributions to the thermovoltage to be separated. A phenomenological model of the electron and phonon transport across these novel devices will be developed using a thermionic emission transport approach. The proposed heterostructure geometries open up new degrees of freedom in the cross-plane transport with independent control of electrons and phonons, which is essential for achieving efficient energy conversion devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如果可以正确地设计热屏障,则固态热能转化率比基于散装层和Seebeck效应的常规热电能量转换更有效。然而,关于固态热能转化的实验研究相对较少,这主要是因为难以与适当的能屏障制造界面,表征跨这些界面的热传输,并将散装热电特性与界面特性分开。提出的2D层次异质结构使这些困难能够克服,并有可能在高效效率的热电发电机和冷却器的设计中产生范式转移。该项目还将涵盖重要的教育活动,包括一项本科研究计划和高中科学教师的外展研讨会。该研究的目的是使用2D层的材料对多级式异质结构中的热运输和能量转换进行基本了解。由于热屏障必须很薄,因此每个屏障在其上只能有较小的温度差。因此,需要使用多阶段设备获得宏观冷却和发电。在拟议的工作中,异质结构是由物理蒸气沉积(PVD)合成的,可用于生产具有数百个周期的异质结构。这些结构几乎不可能通过机械去角质来制造。与分子束外延(MBE)不同,此处提出的材料合成方法是升降兼容的,可以使用PIS实验室中开发的新方法对跨平面转运现象(电气,热电和热电)的可靠测量。这种新的跨平面测量方法以及可配置的纳米结构(即,层厚度和总厚度)将使对热电压的散装和界面(即热发射)贡献。将使用热发射传输方法开发电子和声子传输的现象学模型。拟议的异质结构几何形状通过独立控制电子和声子为跨平面传输开放了新的自由度,这对于实现有效的能量转换设备至关重要。该奖项反映了NSF的法定任务,并被认为是通过使用基金会的智力和更广泛的影响来通过评估来获得支持的珍贵的,这是珍贵的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Cronin其他文献
Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes
准金属超净悬浮碳纳米管中结构相变和大有效带隙的证据
- DOI:
10.1007/s12274-013-0351-5 - 发表时间:
2013 - 期刊:
- 影响因子:9.9
- 作者:
Shun-Wen Chang;Rohan Dhall;Moh Amer;Kentaro Sato;Riichiro Saito;Stephen Cronin - 通讯作者:
Stephen Cronin
Stephen Cronin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Cronin', 18)}}的其他基金
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344723 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
- 批准号:
2204667 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
- 批准号:
2112898 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Detailed Mechanistic Pathways of Surface Catalysis using SERS Spectroscopy: A Joint Theoretical and Experimental Synergistic Approach
合作研究:使用 SERS 光谱的表面催化的详细机理路径:理论和实验联合协同方法
- 批准号:
2106480 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAS: Mechanistic Study of Reaction Intermediates in Nanoparticle-Enhanced Plasma-Assisted Catalysis
CAS:纳米粒子增强等离子体辅助催化反应中间体的机理研究
- 批准号:
1954834 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: In Situ Surface Spectroscopy of 2D Material-based Electrocatalysis and Photoelectrocatalysis
合作研究:二维材料电催化和光电催化的原位表面光谱
- 批准号:
2012845 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Cross-plane and In-plane Transport in 2D Layered Heterostructures
合作研究:了解二维层状异质结构中的跨平面和面内传输
- 批准号:
1905357 - 财政年份:2019
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: A Mechanistic Study of Chemical Enhancement in Surface Enhanced Raman Spectroscopy and Graphene Enhanced Raman Spectroscopy
合作研究:表面增强拉曼光谱和石墨烯增强拉曼光谱化学增强的机理研究
- 批准号:
1708581 - 财政年份:2017
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
UNS:Novel Photocatalysts based on TiO2-Passivated III-V Compounds for CO2 Reduction
UNS:基于 TiO2 钝化 III-V 族化合物的新型光催化剂,用于 CO2 还原
- 批准号:
1512505 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Fifteenth International Conference on the Science and Application of Nanotubes
第十五届国际纳米管科学与应用会议
- 批准号:
1430099 - 财政年份:2014
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似国自然基金
染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
- 批准号:82330049
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
面向地下受限空间的无人机同时探索与覆盖规划研究
- 批准号:62303249
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中缅边境恶性疟原虫对双氢青蒿素-哌喹的抗药性研究及该地区恶性疟替代治疗方案探索
- 批准号:32360118
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
铁稳态破坏引发EZH2抑制剂耐药机制探索及克服方案研究
- 批准号:82373891
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多功能CuFeOx纳米酶在烧伤创面治疗中的应用探索及机制研究
- 批准号:82372552
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant