Terahertz Spectroelectrochemical Methods to Study Semiconductors, 2D Materials, and Metal Organic Frameworks (MOFs)
研究半导体、二维材料和金属有机框架 (MOF) 的太赫兹光谱电化学方法
基本信息
- 批准号:1954453
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is funded by the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) Program and the Chemical Measurement and Imaging (CMI) Program. Under this award, Professor Charles Schmuttenmaer’s laboratory at Yale University utilizes a laser technique known as Terahertz Spectroelectrochemistry, to study chemical structure and reactions at the surfaces of materials that have potential applications in catalysis and electronics. Terahertz light has frequencies roughly from three hundred billion to thirty trillion cycles per second. Its frequency range is higher than microwave radiation (used in wireless communications and microwave ovens), but lower in frequency than infrared light (used in night vision goggles and what we feel as heat). Terahertz light can be used measure the electrical conductivity of materials like semiconductors. Professor Schmuttenmaer and his research group apply different voltages to semiconductor materials and use terahertz light to explore how the conductivity of the material affects the chemical reactions that occur on the semiconductor surfaces. The combined use of terahertz light and electrically-driven chemical reactions gives the new technique, “Terahertz Spectroelectrochemistry” its name. Undergraduate students, graduate students, and postdoctoral associates are being trained in state-of-the-art experimental and computational techniques to provide critical information toward understanding and improving the fundamental science of molecular and semiconductor materials. This provides insight into effectively utilizing the new semiconductor materials in industrially-relevant devices. This project develops and applies Terahertz (THz) Spectroelectrochemistry to several classes of materials relevant to electrodes, including semiconductors, 2D materials, and metal-organic frameworks (MOFs). Spectroelectrochemistry in the THz range is challenging because THz radiation is absorbed and reflected by conductive materials such as electrodes. The Schmuttenmaer group showed that photolithographically patterning optically transparent electrodes in a wire-grid configuration allows strong transmission of THz light. The patterned electrodes can then be used in three-electrode thin layer electrochemical cells to perform THz measurements under applied voltage. The technique is utilized to perform steady-state THz experiments to investigate the density of mobile states in semiconducting materials, among other things. The method is also used in conjunction with ultrafast laser excitation to perform time-resolved measurements to obtain the sub-picosecond dynamic response of materials under applied potential, thereby investigating photoelectrode materials under operating conditions. This time-resolved technique is utilized to investigate heterogeneous electron transfer in molecule-semiconductor donor-acceptor dyads, but is also applicable across the scope of materials discussed in this project. These attributes uniquely position THz spectroelectrochemistry to study operando charge transport in emerging classes of materials, such as transition metal dichalcogenides (TMDs), which are 2D materials, and conductive MOFs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由化学结构,动力学和机制-A(CSDM-A)程序以及化学测量和成像(CMI)计划资助。根据该奖项,耶鲁大学的查尔斯·施密登迈尔(Charles Schmuttenmaer)教授的实验室利用一种称为Terahertz SpectroelectroChemistry的激光技术,研究具有在催化和电子学中潜在应用的材料表面上的化学结构和反应。 Terahertz Light的频率大约为每秒3000亿到三十万亿个周期。它的频率范围高于微波辐射(用于无线通信和微波炉环境),但频率低于红外光(用于夜视护目镜以及我们的热量)。 Terahertz光可用于测量半导体等材料的电导率。 Schmuttenmaer教授及其研究小组将不同的电压应用于半导体材料,并使用Terahertz Light探索材料的电导率如何影响半导体表面上发生的化学反应。 Terahertz光和电动化学反应的联合使用赋予了新技术“ Terahertz Spectroelectroctrochemistry”。本科生,研究生和博士后同伴正在接受最先进的实验和计算技术培训,以提供关键信息,以了解和改善分子和半导体材料的基本科学。这提供了有关有效利用与工业相关的设备中新的半导体材料的见解。该项目开发并应用Terahertz(THZ)SpackroelectroChemistry在与电极有关的几类材料上,包括半导体,2D材料和金属有机框架(MOFS)。 THZ范围内的光谱化学受到挑战,因为THZ辐射被电导材料(例如电极)吸收和反射。 Schmuttenmaer组表明,在电网构型中具有光刻图案的光学上的光学透明电极可实现THZ光的强大传输。然后,图案化的电极可以在三电极薄层电化学细胞中使用,以在施加的电压下进行THZ测量。该技术用于执行稳态THZ实验,以研究半导体材料中移动状态的密度。该方法还与超快速激光兴奋一起使用,以执行时间分辨测量,以获得材料在应用潜力下的材料的亚匹克秒动态响应,从而在工作条件下研究了光电子材料。这种时间分辨的技术用于研究分子 - 官方供体供应器二元组中的异质电子转移,但也适用于该项目中讨论的材料范围。这些属性将唯一的位置定位于镜头电解化学,以研究在新兴材料类别中的操作指控运输,例如过渡金属二甲化物(TMDS),它们是2D材料和导电MOF。该奖项反映了NSF的法规任务,并被认为是通过基金会的知识优点和广泛的范围来进行评估,这是值得通过评估来进行评估的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
THz-Photoconductivity and THz-Conductivity in Metal-Organic Frameworks (MOFs)
金属有机框架 (MOF) 中的太赫兹光电导和太赫兹电导率
- DOI:10.1109/irmmw-thz50927.2022.9895557
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Neu, Jens;Ostresh, Sarah;Pattengale, Brian;Brudvig, Gary W.
- 通讯作者:Brudvig, Gary W.
Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy
- DOI:10.1002/aenm.202102776
- 发表时间:2022-02-26
- 期刊:
- 影响因子:27.8
- 作者:Hempel, Hannes;Savenjie, Tom J.;Unold, Thomas
- 通讯作者:Unold, Thomas
THz spectroscopy of emerging materials for light driven processes and energy harvesting
用于光驱动过程和能量收集的新兴材料的太赫兹光谱
- DOI:10.1117/12.2591087
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Neu, Jens;Pattengale, Brian;Ostresh, Sarah;Capobianco, Matt D.;Brudvig, Gary W.
- 通讯作者:Brudvig, Gary W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Brudvig其他文献
Engendering Catalytic Activity by Increasing Dynamics in a Designed Enzyme
- DOI:
10.1016/j.bpj.2018.11.411 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Jonathan Preston;Bernard Everson;Fabien Giroud;David Vinyard;Kelly Greenland;Emma Bjerkefeldt;Shelley Minteer;Gary Brudvig;Ronald Koder - 通讯作者:
Ronald Koder
Light-driven Water Oxidation Catalyzed by an Oxo-bridged Triruthenium Complex
氧桥三钌配合物催化的光驱动水氧化
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yuta Tsubonouchi;Kosei Yamauchi;Gary Brudvig;Ken Sakai - 通讯作者:
Ken Sakai
Gary Brudvig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Brudvig', 18)}}的其他基金
Collaborative Research: Dinuclear Heterogeneous Catalysts (DHCs) as a new Platform for Selective Oxidation of Carbon Dioxide (CO) and Methane (CH4)
合作研究:双核多相催化剂(DHC)作为二氧化碳(CO)和甲烷(CH4)选择性氧化的新平台
- 批准号:
1955237 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Renewable Energy: Solar Fuels GRC/GRS: Converting Sunlight into Chemical Energy - February 27 & 28, 2015 Lucca, Italy
可再生能源:太阳能燃料 GRC/GRS:将阳光转化为化学能 - 2 月 27 日
- 批准号:
1549695 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
纳米红外光谱电化学系统
- 批准号:22227806
- 批准年份:2022
- 资助金额:813.00 万元
- 项目类别:国家重大科研仪器研制项目
原位光谱电化学分析研究电化学界面稳定性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位光谱电化学分析研究电化学界面稳定性
- 批准号:22204054
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
拉曼光谱电化学耦合单分子成像技术研究异相电-Fenton界面“2+1”电子还原活化的微观机制
- 批准号:22176062
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
宽频通用型表面增强红外光谱电化学装置的研制及应用研究
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
相似海外基金
Characterizing functionalized electrode surfaces with unique spectroelectrochemical methods for biosensor development
使用独特的光谱电化学方法表征功能化电极表面,用于生物传感器的开发
- 批准号:
RGPIN-2016-05528 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Characterizing functionalized electrode surfaces with unique spectroelectrochemical methods for biosensor development
使用独特的光谱电化学方法表征功能化电极表面,用于生物传感器的开发
- 批准号:
RGPIN-2016-05528 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Characterizing functionalized electrode surfaces with unique spectroelectrochemical methods for biosensor development
使用独特的光谱电化学方法表征功能化电极表面,用于生物传感器的开发
- 批准号:
RGPIN-2016-05528 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Characterizing functionalized electrode surfaces with unique spectroelectrochemical methods for biosensor development
使用独特的光谱电化学方法表征功能化电极表面,用于生物传感器的开发
- 批准号:
RGPIN-2016-05528 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Characterizing functionalized electrode surfaces with unique spectroelectrochemical methods for biosensor development
使用独特的光谱电化学方法表征功能化电极表面,用于生物传感器的开发
- 批准号:
RGPIN-2016-05528 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual