CAREER: Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos

职业:面向物理的整合有序与混沌的统计波分析

基本信息

  • 批准号:
    1953000
  • 负责人:
  • 金额:
    $ 39.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-21 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Wireless communications, electronics, and sensor systems are expected to take place in increasingly congested, contested, and competitive environments. The evolving complexity of wireless communications demands fundamental changes to existing electromagnetic wave analysis and modeling methodologies. Often at times, there is no precise knowledge of the wave system, the radiating noise source, and the propagation environment. Furthermore, in the short-wavelength regime, the electromagnetic wave scattering process can be very sensitive to details. It results in a very high variability of wave distributions, and makes the deterministic solution relevant only to the specific configuration. This project proposes new physics-oriented statistical electromagnetic wave models to resolve environmental uncertainties. The proposed research opens up new pathways to exploit the complexity of propagation environments when designing wireless devices and antennas. The outcomes will establish a configurable virtual testbed for communications in complex environments not confined by the laboratory measurements. The research advancements will be integrated with the education to develop unconventional educational tools. The project will create a virtual reality electromagnetic laboratory at University of New Mexico (UNM), which offers a multifaceted teaching and learning environment through innovative data visualization and interactive simulation. Other educational components include developing online courses and advanced cross-disciplinary courses, mentoring high school students through UNMTemps Youth Summer program, and broadening participation of underrepresented groups by working with UNM's state-funded Multicultural Engineering Program and the New Mexico Alliance for Minority Participation. The objective of this research is to investigate fundamental mathematical models and computational algorithms for the statistical wave analysis in complex electromagnetic environments. The project will study an innovative theoretical solution to Maxwell's Equations in the wave-chaotic media (domains exhibiting ray-chaotic dynamics). The fundamental solution (stochastic Green's function) rigorously integrates the coherent and incoherent propagations within a compact form. A new stochastic integral equation method is proposed for the statistical wave propagation through the chaotic environment. It quantitatively interprets the universal statistical properties of wave chaos through the random matrix theory. Since real-world electromagnetic systems often exhibit mixed chaotic and regular wave dynamics, the second part of the work investigates the first-principles theoretical framework of combing the integrable (regular) and non-integrable (chaotic) wave dynamics. By incorporating the component-, site-, and system-specific information with the universal chaotic dynamics, the work accomplishes a comprehensive framework for the statistical analysis and uncertainty quantification of complex wave systems. The advancements will establish an imperative simulation-driven, design-under-chaos capability, which is expected to have a big impact in the engineering discipline. Knowledge from this project will bring forth a new generation of computer-aided design (CAD) tools that will revolutionize electromagnetic simulation, prediction, design and optimization in complex environments. While the proposed research primarily focuses on electrodynamics, the methodology can be applied to other fields including acoustics and vibrations, quantum mesoscopic transport, and nuclear physics.
无线通信、电子和传感器系统预计将出现在日益拥挤、竞争和竞争日益激烈的环境中。无线通信不断发展的复杂性要求对现有电磁波分析和建模方法进行根本性改变。通常,人们对波系统、辐射噪声源和传播环境缺乏精确的了解。此外,在短波长范围内,电磁波散射过程对细节非常敏感。它导致波分布的高度可变性,并使确定性解决方案仅与特定配置相关。该项目提出了新的面向物理的统计电磁波模型来解决环境不确定性。拟议的研究开辟了在设计无线设备和天线时利用传播环境的复杂性的新途径。结果将建立一个可配置的虚拟测试台,用于不受实验室测量限制的复杂环境中的通信。研究进展将与教育相结合,开发非常规的教育工具。该项目将在新墨西哥大学(UNM)创建一个虚拟现实电磁实验室,通过创新的数据可视化和交互式模拟提供多方面的教学环境。其他教育内容包括开发在线课程和高级跨学科课程、通过 UNMTemps 青年暑期计划指导高中生,以及通过与 UNM 国家资助的多元文化工程计划和新墨西哥州少数族裔参与联盟合作扩大代表性不足群体的参与。本研究的目的是研究复杂电磁环境中统计波分析的基本数学模型和计算算法。该项目将研究波混沌介质(表现出射线混沌动力学的域)中麦克斯韦方程组的创新理论解决方案。基本解决方案(随机格林函数)将相干和非相干传播严格集成在紧凑的形式中。提出了一种新的随机积分方程方法,用于统计波在混沌环境中的传播。它通过随机矩阵理论定量地解释了波动混沌的普遍统计特性。由于现实世界的电磁系统经常表现出混合的混沌和规则波动力学,因此该工作的第二部分研究了结合可积(规则)和不可积(混沌)波动力学的第一性原理理论框架。通过将特定于组件、特定位置和系统的信息与普遍的混沌动力学相结合,该工作完成了复杂波浪系统的统计分析和不确定性量化的综合框架。这些进步将建立必要的仿真驱动、混沌设计能力,预计将对工程学科产生重大影响。该项目的知识将催生新一代计算机辅助设计 (CAD) 工具,彻底改变复杂环境中的电磁仿真、预测、设计和优化。虽然拟议的研究主要集中在电动力学上,但该方法可以应用于其他领域,包括声学和振动、量子介观输运和核物理。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Hybrid Classical-Quantum Computing Framework for RIS-assisted Wireless Network
Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green's Function Approach
预测复杂外壳中的统计波物理:随机并进格林函数方法
  • DOI:
    10.1109/temc.2023.3234912
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lin, Shen;Luo, Sangrui;Ma, Shukai;Feng, Junda;Shao, Yang;Drikas, Zachary B.;Addissie, Bisrat D.;Anlage, Steven M.;Antonsen, Thomas;Peng, Zhen
  • 通讯作者:
    Peng, Zhen
On the Vectorial Property of Stochastic Dyadic Green's Function in Complex Electronic Enclosures
复杂电子外壳中随机并进格林函数的矢量性质
Engineering Reflective Metasurfaces with Ising Hamiltonian and Quantum Annealing
On the Statistical Analysis of Space-Time Wave Physics in Complex Enclosures
复杂外壳中时空波动物理的统计分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhen Peng其他文献

Reversible Hybrid Aqueous Li-CO2 Batteries with High Energy Density and HCOOH Production
具有高能量密度和 HCOOH 生产的可逆混合水系 Li-CO2 电池
  • DOI:
    10.1002/cssc.201903297
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Rui Yang;Zhen Peng;Jiafang Xie;Yiyin Huang;Rahul Anil Borse;Xueyuan Wang;Maoxiang Wu;Yaobing Wang
  • 通讯作者:
    Yaobing Wang
Foundation and Background for Energy Internet Simulation
能源互联网仿真基础与背景
  • DOI:
    10.1007/978-3-030-45453-1_1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Shuqing Zhang;Shaopu Tang;P. Breuhaus;Zhen Peng;Weijie Zhang
  • 通讯作者:
    Weijie Zhang
Paths for improvements of smallholder dairies: Case-study on local food security in arid regions of China
小农奶牛场的改进路径:中国干旱地区当地粮食安全案例研究
  • DOI:
    10.1016/j.foodcont.2021.108372
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Shanshan Li;Yanfu Bai;Jianxin Jiao;A. Degen;Tao Zhang;Wenyin Wang;L. Ding;R. Long;Zhen Peng;Zhiqiang Dang;Dawei Zhang;Z. Shang
  • 通讯作者:
    Z. Shang
Identification of C2H2 subfamily ZAT genes in Gossypium species reveals GhZAT34 and GhZAT79 enhanced salt tolerance in Arabidopsis and cotton
棉属 C2H2 亚家族 ZAT 基因的鉴定揭示 GhZAT34 和 GhZAT79 增强拟南芥和棉花的耐盐性
  • DOI:
    10.1016/j.ijbiomac.2021.06.166
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Abdul Rehman;Na Wang;Zhen Peng;Shoupu He;Zibo Zhao;Qiong Gao;Zhenzhen Wang;Hongge Li;Xiongming Du
  • 通讯作者:
    Xiongming Du
Effects of grazing exclusion on emission of greenhouse gases and soil orgranic carbon turnouver in alpine shrub meadow
禁牧对高寒灌丛草甸温室气体排放及土壤有机碳周转的影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zhiqiang Dang;Na Guo;Shanshan Li;A. Allan Degen;Jingjuan Cao;Bin Deng;Aidong Wang;Zhen Peng;Luming Ding;Ruijun Long;Zhanhuan Shang
  • 通讯作者:
    Zhanhuan Shang

Zhen Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhen Peng', 18)}}的其他基金

ECCS-EPSRC: Towards Quantum-assisted Reconfigurable Indoor Wireless Environments
ECCS-EPSRC:迈向量子辅助可重构室内无线环境
  • 批准号:
    2152617
  • 财政年份:
    2022
  • 资助金额:
    $ 39.2万
  • 项目类别:
    Standard Grant
CAREER: Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos
职业:面向物理的整合有序与混沌的统计波分析
  • 批准号:
    1750839
  • 财政年份:
    2018
  • 资助金额:
    $ 39.2万
  • 项目类别:
    Standard Grant
AF: Small: Geometry-aware Integral Equation Solvers for High-fidelity Electromagnetic Modeling and Simulation
AF:小型:用于高保真电磁建模和仿真的几何感知积分方程求解器
  • 批准号:
    1526605
  • 财政年份:
    2015
  • 资助金额:
    $ 39.2万
  • 项目类别:
    Standard Grant

相似国自然基金

面向信息物理融合的工业互联网跨层协同技术研究
  • 批准号:
    62371354
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向空地协同交管的物理层安全性能度量理论与优化方法
  • 批准号:
    62301076
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向微弱紫外信号探测的GaN基探测器与电路前级晶体管片上集成基础物理及关键技术研究
  • 批准号:
    62374084
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向理想物理性能分布的新一代高性能装配技术基础理论与方法
  • 批准号:
    52335011
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
面向认知通信中交叉干扰的IRS辅助物理层安全技术研究
  • 批准号:
    62301502
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Music listening interventions for children receiving mechanical ventilation: A mechanistic trial
对接受机械通气的儿童进行音乐聆听干预:一项机械试验
  • 批准号:
    10525363
  • 财政年份:
    2022
  • 资助金额:
    $ 39.2万
  • 项目类别:
2022 Drug Carriers in Medicine and Biology GRC/GRS
2022年医学和生物学药物载体GRC/GRS
  • 批准号:
    10378904
  • 财政年份:
    2021
  • 资助金额:
    $ 39.2万
  • 项目类别:
Scholars in Oncology Associated Research (SOAR)
肿瘤学学者相关研究 (SOAR)
  • 批准号:
    9793720
  • 财政年份:
    2019
  • 资助金额:
    $ 39.2万
  • 项目类别:
Scholars in Oncology Associated Research (SOAR)
肿瘤学学者相关研究 (SOAR)
  • 批准号:
    10681395
  • 财政年份:
    2019
  • 资助金额:
    $ 39.2万
  • 项目类别:
Scholars in Oncology Associated Research (SOAR)
肿瘤学学者相关研究 (SOAR)
  • 批准号:
    10219198
  • 财政年份:
    2019
  • 资助金额:
    $ 39.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了