Collaborative Research: Investigation of the Relationship between Processing Conditions and Morphology of Lithium During Electroplating
合作研究:电镀过程中加工条件与锂形貌关系的研究
基本信息
- 批准号:1929949
- 负责人:
- 金额:$ 22.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphite is currently used as the anode component in most rechargeable lithium-ion batteries. Replacing graphite with lithium metal holds the promise to improve the battery capacity by several times while also reducing costs. During battery charging and discharging, the lithium metal surface is prone to losing its smooth morphology and forms many sharp protrusions, a phenomenon, known as dendrite growth. Dendrite growth results in inferior battery life and induces severe safety concerns, both of which are major barriers to the commercialization of lithium-metal-based rechargeable batteries. This project aims to provide fundamental knowledge to guide the advanced manufacturing of lithium metal anodes with long cycle life and stability. It will focus on understanding the role of residual stress that accumulates within lithium metal during battery cycling in triggering lithium dendrite growth, and how its adverse effect can be eliminated by the design of a novel porous anode architecture. Integrated characterization, modeling and manufacturing activities will be carried out to achieve this goal. In addition to having major impacts on the development of next-generation batteries for electrical vehicles and electric grids, the mechanistic understanding acquired in the project will also facilitate the use of other earth-abundant metallic materials in energy storage devices. The integrated education and outreach component of the project will benefit a broad range of groups by providing authentic research experiences to native Americans and community college students, promoting undergraduate research and graduate education through active student recruitment and retention, and integrating the latest progress in battery research into curriculum on mechanics and materials science.Despite extensive efforts, a complete understanding of the lithium dendrite growth mechanism has not yet been established. This project builds on the PIs' recent findings and will investigate stress as a key processing condition for controlling lithium surface morphology during electroplating, which has previously received little attention. It will combine in-situ and ex-situ characterizations, modeling and fabrication studies to: 1) understand how the stress, current density and plating time collectively control the lithium morphology; 2) construct a lithium morphology diagram to predict lithium plating morphology as a function of controllable processing conditions, 3) apply the acquired knowledge to design lithium anode architecture that enables stable cycling under high current densities, and 4) explore a potential cost-competitive method to manufacture high-performance lithium anodes. This research is expected to provide essential scientific guidance for the manufacturing of stable lithium metal anode structures for high capacity rechargeable batteries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前,大多数可充电锂离子电池都使用石墨作为阳极成分。用锂金属代替石墨有望将电池容量提高数倍,同时还能降低成本。在电池充放电过程中,锂金属表面容易失去光滑的形态,并形成许多尖锐的突起,这种现象称为枝晶生长。枝晶生长会导致电池寿命缩短并引发严重的安全问题,这两者都是锂金属可充电电池商业化的主要障碍。该项目旨在为指导具有长循环寿命和稳定性的锂金属负极的先进制造提供基础知识。它将重点了解电池循环过程中锂金属内积累的残余应力在触发锂枝晶生长中的作用,以及如何通过设计新型多孔阳极结构来消除其不利影响。为了实现这一目标,将进行综合表征、建模和制造活动。除了对电动汽车和电网的下一代电池的开发产生重大影响外,该项目中获得的机械理解还将促进其他地球储量丰富的金属材料在储能设备中的使用。该项目的综合教育和推广部分将为美国原住民和社区学院的学生提供真实的研究经验,通过积极招募和保留学生来促进本科生研究和研究生教育,并整合电池研究的最新进展,从而使广泛的群体受益。纳入力学和材料科学课程。尽管付出了巨大的努力,但尚未建立对锂枝晶生长机制的完整理解。该项目以 PI 最近的发现为基础,将研究应力作为电镀过程中控制锂表面形态的关键加工条件,而此前这一点很少受到关注。它将结合原位和异位表征、建模和制造研究,以:1)了解应力、电流密度和电镀时间如何共同控制锂形态; 2) 构建锂形态图来预测锂镀层形态作为可控加工条件的函数,3) 应用所获得的知识来设计锂阳极结构,以实现高电流密度下的稳定循环,4) 探索一种潜在的具有成本竞争力的方法制造高性能锂负极。这项研究预计将为高容量可充电电池的稳定锂金属阳极结构的制造提供重要的科学指导。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recycled cathode materials enabled superior performance for lithium-ion batteries
回收正极材料使锂离子电池具有卓越性能
- DOI:10.1016/j.joule.2021.09.005
- 发表时间:2021-10-01
- 期刊:
- 影响因子:39.8
- 作者:Xiaotu Ma;Mengyuan Chen;Zhangfeng Zheng;Dennis Bullen;Jun Wang;Chloe Harrison;E. Gratz;Yulin Lin;Zhenzhen Yang;Youtian Zhang;Fan Wang;David C. Robertson;S. Son;I. Bloom;Jia;M. Ge;Xia Xiao;Wah‐Keat Lee;Ming;Qiang Wang;Jinzhao Fu;Yubin Zhang;Bryer C. Sousa;R. Arsenault;P. Karlson;Nakia L. Simon;Yan Wang
- 通讯作者:Yan Wang
Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks
卷积循环神经网络的自监督学习和微观结构演化预测
- DOI:10.1016/j.patter.2021.100243
- 发表时间:2021-05-14
- 期刊:
- 影响因子:6.5
- 作者:Yang K;Cao Y;Zhang Y;Fan S;Tang M;Aberg D;Sadigh B;Zhou F
- 通讯作者:Zhou F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Tang其他文献
Rapid mantle convection drove massive crustal thickening in the late Archean
快速的地幔对流导致太古代晚期地壳大规模增厚
- DOI:
10.1016/j.gca.2019.03.039 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:5
- 作者:
Ming Tang;Cin;R. Rudnick;K. Condie - 通讯作者:
K. Condie
Tackling System Induced Bias in Federated Learning: Stratification and Convergence Analysis
解决联邦学习中系统引起的偏差:分层和收敛分析
- DOI:
10.1109/infocom53939.2023.10228873 - 发表时间:
2023-05-17 - 期刊:
- 影响因子:0
- 作者:
Ming Tang;V. Wong - 通讯作者:
V. Wong
PraFFL: A Preference-Aware Scheme in Fair Federated Learning
PraFFL:公平联邦学习中的偏好感知方案
- DOI:
10.48550/arxiv.2404.08973 - 发表时间:
2024-04-13 - 期刊:
- 影响因子:0
- 作者:
Rongguang Ye;Ming Tang - 通讯作者:
Ming Tang
Composition of the Earth's Crust
地壳的组成
- DOI:
10.1016/b978-0-08-102908-4.00044-8 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Ming Tang - 通讯作者:
Ming Tang
Fast Convex Optimization via Differential Equation with Hessian-Driven Damping and Tikhonov Regularization
通过采用 Hessian 驱动阻尼和 Tikhonov 正则化的微分方程进行快速凸优化
- DOI:
10.1007/s10957-024-02462-x - 发表时间:
2024-05-30 - 期刊:
- 影响因子:1.9
- 作者:
Gangfan Zhong;Xiaozhe Hu;Ming Tang;Liuqiang Zhong - 通讯作者:
Liuqiang Zhong
Ming Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Tang', 18)}}的其他基金
IRES Track 1: Self-assembled liquids and thin films for efficient photon upconversion with triplet excitons in air
IRES 轨道 1:自组装液体和薄膜,用于空气中三线态激子的高效光子上转换
- 批准号:
2142762 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Plasmon-induced Triplet Energy Transfer (PITET) for Photon Upconversion
用于光子上转换的等离激元诱导三重态能量转移 (PITET)
- 批准号:
2147792 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
PFI-TT: Achieving efficient production of visible light from semiconductor nanocrystals in water
PFI-TT:实现水中半导体纳米晶体高效产生可见光
- 批准号:
2147791 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Plasmon-induced Triplet Energy Transfer (PITET) for Photon Upconversion
用于光子上转换的等离激元诱导三重态能量转移 (PITET)
- 批准号:
2003544 - 财政年份:2020
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
PFI-TT: Achieving efficient production of visible light from semiconductor nanocrystals in water
PFI-TT:实现水中半导体纳米晶体高效产生可见光
- 批准号:
1941184 - 财政年份:2020
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
IRES Track 1: Self-assembled liquids and thin films for efficient photon upconversion with triplet excitons in air
IRES 轨道 1:自组装液体和薄膜,用于空气中三线态激子的高效光子上转换
- 批准号:
1827087 - 财政年份:2018
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
I-Corps: Hybrid Halos for Biological Markers, Probes and Therapies
I-Corps:生物标记、探针和治疗的混合光环
- 批准号:
1839049 - 财政年份:2018
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
CAREER: Tuning optical responses in artificial molecules of monovalent gold nanocrystals
职业:调节单价金纳米晶体人造分子的光学响应
- 批准号:
1351663 - 财政年份:2014
- 资助金额:
$ 22.86万 - 项目类别:
Continuing Grant
相似国自然基金
面向重大灾情精准调查的随机无人机路径规划问题研究
- 批准号:72304049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海南省儿童急性呼吸道感染病原的分子流行病学调查及基于数学模型的流行特点研究
- 批准号:82360658
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于复杂抽样和时空效应下卫生服务调查数据的小域估计方法研究
- 批准号:82304238
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多元调查数据中统计关联模式的潜变量与图建模研究
- 批准号:12301373
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
师徒关系视角下中国高校青年教师的科研创新能力研究:基于大数据与微观调查的证据
- 批准号:72274019
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402728 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Continuing Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
- 批准号:
2405548 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331202 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Continuing Grant