CRII:SCH:A Generative Deep Learning (GDL) based Platform for Super-resolution, Virtual-Pathological Visualization of Coronary Images
CRII:SCH:基于生成深度学习(GDL)的平台,用于冠状动脉图像的超分辨率、虚拟病理可视化
基本信息
- 批准号:1948540
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coronary artery disease (CAD) has been influencing a market over $2.8 billion with roughly 1,000,000 treatment procedures performed annually. Existing guidance for CAD treatment suffers from limited spatial resolution and lacks real-time detailed pathological identification. This project is to investigate novel computational techniques for pathological, super-resolution visualization of coronary images. The project, if successful, will contribute towards a new generation of clinical guidance for the treatment of cardiovascular disease, which is currently the leading cause of human deaths in the United States. Technically, the method of encoding multi-domain image representations into a single-domain image acquisition could benefit other fields, such as multi-camera surveillance monitoring, multimodal biomedical imaging, etc., in terms of greatly reducing hardware cost and medical labor. The educational plan in this project emphasizes activities designed to guide senior designs, enrich curriculum in deep learning courses, and facilitate outreach for minority students in multicultural engineering programs.This project aims to develop a data-driven approach to use off-line data and training process, without any hardware modifications, to generatively produce new information that could not be acquired previously or can only be obtained ex vivo. This project will develop generative deep learning algorithms to produce additional information for low-resolution optical coherence tomography (OCT) images by aggregating image information from high-resolution OCT images and histological microscopic images during off-line training. This project will investigate on improving the resolution of OCT while maintaining fast scanning rate via a volumetric generative adversarial network (GAN) for super-resolution. This project will develop a novel unpaired training scheme to map OCT image to a histopathology image by using a GAN-based image translation framework. The approach will be validated using both objective and subjective analysis on OCT images and histopathology images. This project is expected to generate academic outcomes in both computer science and biomedical informatics. This project will provide a deep learning solution for cross-platform volumetric super-resolution and a generative learning approach to address cross-modality image translation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冠状动脉疾病(CAD)一直在影响超过28亿美元的市场,每年进行约1,000,000个治疗程序。现有的CAD治疗指南遭受有限的空间分辨率,缺乏实时详细的病理鉴定。该项目是为了研究用于冠状动脉图像的病理,超分辨率可视化的新型计算技术。如果成功的话,该项目将有助于新一代的临床指导,以治疗心血管疾病,这是美国人类死亡的主要原因。从技术上讲,将多域图像表示形式编码为单域图像采集可以使其他领域受益,例如多模式监视,多模式生物医学成像等,大大降低硬件成本和医疗劳动。该项目中的教育计划强调了旨在指导高级设计,丰富的深度学习课程课程的活动,并促进了在多元文化工程计划中为少数族裔学生提供外展活动。该项目旨在开发一种使用数据驱动的方法来使用离线数据和培训过程,而无需任何硬件修改,以至于无法获得任何新的信息,以前无法获得任何硬件的信息,或者只能获得Exex viv。该项目将开发生成的深度学习算法,以通过在离线训练期间从高分辨率OCT图像和组织学显微镜图像中汇总图像信息,从而为低分辨率光学相干断层扫描(OCT)图像提供其他信息。该项目将调查有关通过体积生成对抗网络(GAN)维持快速扫描速率改善OCT的分辨率的研究。该项目将通过使用基于GAN的图像翻译框架来开发一种新颖的未配对训练方案,以将OCT图像映射到组织病理学图像。该方法将使用OCT图像和组织病理学图像的客观和主观分析来验证。预计该项目将在计算机科学和生物医学信息学上产生学术成果。该项目将为跨平台大量超级分辨率和一种生成学习方法提供深入学习解决方案,以解决交叉模式图像翻译。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子的智力优点和更广泛的影响标准通过评估来获得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inpainting for Saturation Artifacts in Optical Coherence Tomography Using Dictionary-Based Sparse Representation
- DOI:10.1109/jphot.2021.3056574
- 发表时间:2021-04-01
- 期刊:
- 影响因子:2.4
- 作者:Liu, Hongshan;Cao, Shengting;Gan, Yu
- 通讯作者:Gan, Yu
Co-Seg: An Image Segmentation Framework Against Label Corruption
- DOI:10.1109/isbi48211.2021.9433790
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Ziyi Huang;Haofeng Zhang;A. Laine;E. Angelini;C. Hendon;Yu Gan
- 通讯作者:Ziyi Huang;Haofeng Zhang;A. Laine;E. Angelini;C. Hendon;Yu Gan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Gan其他文献
An Improved Heterogeneous Dynamic List Schedule Algorithm
一种改进的异构动态列表调度算法
- DOI:
10.1007/978-3-030-60245-1_11 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Hu;Yu Gan;Yuan Wen;Xiangyu Lv;Yonghao Wang;Xiao Zeng;Meikang Qiu - 通讯作者:
Meikang Qiu
High mobility cerium-doped indium oxide thin films prepared by reactive plasma deposition without oxygen
- DOI:
10.1016/j.vacuum.2022.111512 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Yanping Zhang;Yu Gan;Tian Gan;Lili Wu;Jingquan Zhang;Xia Hao;Dewei Zhao - 通讯作者:
Dewei Zhao
Towards Geometric Modeling of the Atria using Optical Coherence Tomography
使用光学相干断层扫描进行心房几何建模
- DOI:
10.1364/cancer.2016.jm3a.26 - 发表时间:
2016 - 期刊:
- 影响因子:6.2
- 作者:
Yu Gan;S. Gutbrod;I. Efimov;C. Hendon - 通讯作者:
C. Hendon
Multi-layer laser solid forming of Zr65Al7.5Ni10Cu17.5 amorphous coating:Microstructure and corrosion resistance
Zr65Al7.5Ni10Cu17.5非晶涂层多层激光立体成形:显微组织与耐蚀性能
- DOI:
10.1016/j.optlastec.2014.12.008 - 发表时间:
2015-06 - 期刊:
- 影响因子:5
- 作者:
Yu Gan;Wenxian Wang;Zhuosen Guan;Zeqin Cui - 通讯作者:
Zeqin Cui
High-accuracy point cloud registration for 3D shape measurement based on double constrained intersurface mutual projections
基于双约束面间互投影的高精度3D形状测量点云配准
- DOI:
10.1016/j.measurement.2022.111050 - 发表时间:
2022-03 - 期刊:
- 影响因子:5.6
- 作者:
Guangmin Li;Yu Gan;Guodong Liu;Fengdong Chen - 通讯作者:
Fengdong Chen
Yu Gan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Gan', 18)}}的其他基金
CAREER: Developing Algorithms for Object-Adaptive Super-Resolution in Biomedical Imaging
职业:开发生物医学成像中对象自适应超分辨率算法
- 批准号:
2239810 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII:SCH:A Generative Deep Learning (GDL) based Platform for Super-resolution, Virtual-Pathological Visualization of Coronary Images
CRII:SCH:基于生成深度学习(GDL)的平台,用于冠状动脉图像的超分辨率、虚拟病理可视化
- 批准号:
2222739 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
CRII:SCH:A Generative Deep Learning (GDL) based Platform for Super-resolution, Virtual-Pathological Visualization of Coronary Images
CRII:SCH:基于生成深度学习(GDL)的平台,用于冠状动脉图像的超分辨率、虚拟病理可视化
- 批准号:
2222739 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Harnessing Tensor Information to Improve EHR Data Quality for Accurate Data-driven Screening of Diabetic Retinopathy with Routine Lab Results
SCH:利用张量信息提高 EHR 数据质量,通过常规实验室结果进行数据驱动的糖尿病视网膜病变的准确筛查
- 批准号:
10491247 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10659235 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
CRII: SCH: Semi-Supervised Physics-Based Generative Model for Data Augmentation and Cross-Modality Data Reconstruction
CRII:SCH:基于半监督物理的数据增强和跨模态数据重建生成模型
- 批准号:
1755695 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
ジェンアセタールを利用する生物活性化合物の実用的合成
使用Geneacetals实际合成生物活性化合物
- 批准号:
18032043 - 财政年份:2006
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas