CAREER: Next Generation Universal Radio Platform with On-Demand Operation across UHF to Sub-Terahertz Bands
事业:下一代通用无线电平台,可在 UHF 至亚太赫兹频段内按需运行
基本信息
- 批准号:1943040
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The growth of emergent communication systems in both the industrial and commercial sectors has created a strong demand for extremely wideband radio systems capable of handling multi-Giga-bits-per-second (Gbps) data rates. More precisely, the desire for general-use ‘5G and beyond’ radios require architectures with continuous operation across the whole millimeter-wave (mm-wave) spectrum up to the sub-terahertz (sub-THz) bands. However, a major barrier against achieving that goal is the associated signal loss that results from the large path loss and atmospheric absorption at those frequencies. High gain multi-antenna radios are a potential solution, but they require massive hardware, making them unsuitable for 5G devices. To reduce hardware requirements, research has been focused on implementing fully digital transceivers to replace most of the analog hardware with software operations. This hardware-to-software convergence is still limited to low frequencies and remains relatively expensive. This CAREER presents novel techniques to implement a universal radio architecture for operation across legacy, 5G, and future 6G bands using a single multifunctional and adaptable platform. This research will lead to improvement in terrestrial, airborne, satellite, and vehicle-to-vehicle communications. Also, mm-wave and sub-THz systems will enable assistive technology via miniature medical, wearable, and implantable devices. Therefore, this research will have significant societal benefits impacting daily life for all. The research proposed in this project will be integrated with the principal investigator’s educational plans to develop new courses for both undergraduate and graduate students with focus on 5G and mm-wave transceivers. Efforts will also be taken to broaden the participation of underrepresented groups in STEM via curriculum development, undergraduate research programs, and outreach efforts. A new STEM outreach program on hands-on activities on radio communications will be established that involves the children of formerly homeless population, predominantly Hispanics and African Americans, individuals with disabilities, substance use, and mental health disorders. The goal of this project is to study, design, and develop wideband multifunctional adaptable transceivers for operation across the 5G, mm-wave, and sub-THz spectrum. To date, transceivers that can handle extremely wide operational bandwidths are not available. Indeed, current radios suffer from several bottlenecks: 1) antennas suffer from size-bandwidth-gain tradeoffs and are very lossy at high frequencies (i.e. mm-wave and sub-THz), 2) wideband radio frequency (RF) components are costly, lossy, and nonlinear, 3) high speed digitizers are power hungry and cost prohibitive, and 4) baseband digital electronics and software defined radios (SDR) are limited to narrowband and low frequency operations. This CAREER addresses these issues and brings forward innovative techniques to implement a universal radio with ‘on demand’ operation from a few hundred MHz to sub-THz frequencies using a single multifunctional and upgradable platform that combines 1) extremely wideband and reconfigurable aperture-in-aperture radiator, 2) high frequency modular and tunable RF front-ends that are inexpensive and power efficient operating from UHF (300MHz) up to sub-THz (300GHz) bands, and 4) physical layer interference suppression techniques. Importantly, the proposed radio is upgradable with evolving SDR technologies. That is, as SDR frequency coverage expands into emergent bands and becomes more affordable for commercial use, the RF hardware will be replaced with software operations. This hardware-to-software convergence will contribute in further reduction of the modular hardware whereby more RF modules will be integrated in the SDR. The long-term vision of this project is to implement an affordable and efficient fully digital system, with minimum hardware, operating from the low microwave frequencies up to the mm-wave bands. Overall, the proposed architecture will enable interference resiliency with increased spectral efficiency, spatial filtering, and concurrent beams across extremely large bandwidths.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工业和商业领域的新兴通信系统的增长已经对能够处理每秒多数(GBPS)数据速率的极端宽带无线电系统的需求强劲。更确切地说,对通用“ 5G及以后”无线电的渴望需要在整个毫米波(mm波)频谱上连续运行的架构,直到子terahertz(Sub-Thz)频段。但是,反对实现该目标的主要障碍是相关的信号损失,这是由于这些频率下大的路径损失和大气吸收而导致的。高增益多ANTENNA收音机是潜在的解决方案,但是它们需要大量的硬件,使其不适合5G设备。为了减少硬件要求,研究一直集中在实施全数字收发器上,以用软件操作替换大多数模拟硬件。这种硬件到软件的收敛仍然仅限于低频,并且静止相对较贵。该职业生涯提出了新的技术,可以使用单个多功能和适应性的平台实施通用的无线电架构,以供遍历传统,5G和未来的6G频段进行操作。这项研究将导致陆地,机载,卫星和车辆到车辆通信的改善。此外,MM-Wave和Sub-THZ系统将通过微型医疗,可穿戴设备和可植入的设备启用辅助技术。因此,这项研究将具有重大的社会利益,影响所有人的日常生活。该项目中提出的研究将与主要研究人员的教育计划集成,以为本科和研究生开发新课程,重点关注5G和MM波收发器。还将采取努力通过课程开发,本科研究计划和外展工作来扩大代表性不足的群体的参与。将建立一项有关无线电通信活动的新STEM宣传计划,涉及以前无家可归的人口,主要是西班牙裔和非洲裔美国人,残疾人,药物使用和心理健康障碍的孩子。该项目的目的是研究,设计和开发宽带多功能适应性的收发器,以在5G,MM-WAVE和SUB-THZ频谱上进行操作。迄今为止,无法处理极宽的运行带宽的收发器。实际上,当前的无线电甲板遭受了几个瓶颈的困扰:1)天线遇到了大小带宽的折衷方案,在高频(即MM-Wave和Sub-thz)中非常有损失,2)宽带射频(RF)组件(RF)组件成本成本昂贵,损失和非线性和非linelear,and Nonlinear,3)高速数字式式悬挂式和4),以及4),且构成式灯笼式的灯光和4)4)4) (SDR)仅限于窄带和低频操作。 This CAREER addresses these issues and brings forward innovative techniques to implement a universal radio with ‘on demand’ operation from a few hundred MHz to sub-THz frequencies using a single multifunctional and upgradeable platform that combines 1) extremely wideband and reconfigurable aperture-in-aperture radiator, 2) high frequency modular and tunable RF front-ends that are inexpensive and power efficient operating from UHF (300MHz) up to Sub-Thz(300GHz)频段,4)物理层干扰抑制技术。重要的是,提出的无线电可以通过不断发展的SDR技术升级。也就是说,随着SDR频率覆盖范围扩展到新兴频段,并且在商业用途中变得更加负担得起,RF硬件将被软件操作替换。这种硬件到软件的收敛将有助于进一步减少模块化硬件,从而将更多的RF模块集成在SDR中。该项目的长期愿景是实施一个负担得起且高效的完全数字系统,最低的硬件,从低微波频率运行到MM-WAVE频段。总体而言,拟议的结构将通过提高光谱效率,空间滤波以及在极大的带宽上的同时进行梁的干扰弹性。该奖项反映了NSF的法定任务,并通过使用基金会的知识功绩和更广泛的影响标准来评估NSF的法定任务。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Isolation in Monostatic Simultaneous Transmit and Receive Systems Using a Quasi-Symmetrical Self-Interference Cancellation Architecture
- DOI:10.1109/jmw.2022.3227242
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:M. N. Tarek;Marisol Roman Guerra;Anthony Nunez;Md Nazim Uddin;E. Alwan
- 通讯作者:M. N. Tarek;Marisol Roman Guerra;Anthony Nunez;Md Nazim Uddin;E. Alwan
A Modified T Shaped Complex FIR-Circuit for Simultaneous Transmit and Receive System
一种改进的T形复合FIR电路用于同步发射和接收系统
- DOI:10.1109/usnc-ursi52151.2023.10238277
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Anwar Tarek, Md Nurul;Guerra, Marisol Roman;Uddin, Md Nazim;Alwan, Elias A.
- 通讯作者:Alwan, Elias A.
Power Efficient RF Self-Interference Cancellation System for Simultaneous Transmit and Receive
用于同时发送和接收的高能效射频自干扰消除系统
- DOI:10.1109/aps/ursi47566.2021.9704722
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Anwar Tarek, Md Nurul;Roman, Marisol;Alwan, Elias A.
- 通讯作者:Alwan, Elias A.
Enhancing Gain Through Optimal Antenna Element Distribution in a Thinned Array Configuration
- DOI:10.1109/ojap.2023.3331322
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Michael Ortiz;Md Nazim Uddin;Marisol Roman Guerra;Elias A. Alwan
- 通讯作者:Michael Ortiz;Md Nazim Uddin;Marisol Roman Guerra;Elias A. Alwan
Low Profile Dual-Band Shared Aperture Array for Vehicle-to-Vehicle Communication
- DOI:10.1109/access.2021.3124311
- 发表时间:2021-01-01
- 期刊:
- 影响因子:3.9
- 作者:Govindarajulu, Sandhiya Reddy;Hokayem, Rimon;Alwan, Elias A.
- 通讯作者:Alwan, Elias A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elias Alwan其他文献
Elias Alwan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elias Alwan', 18)}}的其他基金
NSF Convergence Accelerator Track G: Autonomously Tunable Waveform-Agnostic Radio Adapter for Seamless and Secure Operation of DoD Devices Through Non-Cooperative 5G Networks
NSF 融合加速器轨道 G:自主可调波形无关无线电适配器,可通过非合作 5G 网络无缝、安全地操作国防部设备
- 批准号:
2226392 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Autonomously Reconfigurable Hardware-Reduced Wideband Transceivers for Efficient Passive-Active Spectrum Coexistence
合作研究:SWIFT:SMALL:自主可重构硬件精简宽带收发器,实现高效无源-有源频谱共存
- 批准号:
2030250 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Conference Grant: Student Travel Awards for 2019 International Workshop on Antenna Technology (iWAT) to be held in Miami, Florida, March 3-6, 2019
会议补助金:2019 年国际天线技术研讨会 (iWAT) 学生旅行奖将于 2019 年 3 月 3 日至 6 日在佛罗里达州迈阿密举行
- 批准号:
1915772 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI: Acquisition of an 18GHz to 110GHz Millimeter-Wave Anechoic Chamber
MRI:获取 18GHz 至 110GHz 毫米波电波暗室
- 批准号:
1828458 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
- 批准号:71302093
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: LoRa Enabled Space-air-ground Integrated Networks for Next-Generation Agricultural IoT
职业生涯:LoRa 支持下一代农业物联网的天地一体化网络
- 批准号:
2338976 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant