CAREER: Practical Privacy and Fairness for Data-Driven Applications
职业:数据驱动应用程序的实用隐私和公平
基本信息
- 批准号:1943016
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data-driven applications play an increasing role in peoples’ lives, underpinning systems and services that collect broad personal information to provide novel functionality and valuable insights. Machine learning techniques are predominantly used to implement these applications, and developers have published an array of libraries that make it easy for any programmer to benefit from this technology. While excitement over these developments has led to numerous positive contributions, it has also been accompanied by concerns around the privacy of individuals’ data, and the potential for these systems to discriminate against some individuals. This project aims to move ahead of these problems by exploring verification techniques for uncovering instances of protected information use that lead to privacy loss and discrimination. Inspired by recent advances that allow attribution of predictions in machine learning models, we build on methods from software model checking and optimization to locate components pivotal to these outcomes, and construct data representations that aid in removing them. In parallel, we are developing a deeper understanding of new types of software "bugs" that result in such harms: bias amplification, which imperils fairness, and exploitable data memorization, which introduces privacy risk. We aim to quantify the extent to which existing techniques can prevent the occurrence of these bugs, and inform the development of new ones that are specifically targeted at them. As this project progresses, we are applying the results towards educating a diverse workforce on data privacy, algorithmic fairness, and rigorous approaches to constructing software that uses machine learning effectively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的应用程序在人们的生活中发挥着越来越大的作用,支撑着收集广泛个人信息以提供新颖的功能和有价值的见解的系统和服务,机器学习技术主要用于实现这些应用程序,并且开发人员已经发布了一系列库来实现这些应用程序。任何程序员都可以轻松地从这项技术中受益,虽然对这些发展的兴奋带来了许多积极的贡献,但也伴随着对个人数据隐私以及这些系统可能歧视某些个人的担忧。该项目旨在通过探索验证来解决这些问题揭示导致隐私丢失和歧视的受保护信息使用实例的技术受到机器学习模型中预测归因的最新进展的启发,我们基于软件模型检查和优化的方法来定位对这些结果至关重要的组件,并构建。与此同时,我们正在对导致此类危害的新型软件“错误”有更深入的了解:偏见放大会危及公平性,而可利用的数据记忆则会带来隐私风险。量化现有技术可以在多大程度上防止这些错误的发生,并为专门针对这些错误的新技术的开发提供信息。随着该项目的进展,我们正在应用这些结果,对多元化的员工进行数据隐私、算法方面的教育。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TEO: ephemeral ownership for IoT devices to provide granular data control
- DOI:10.1145/3498361.3539774
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Han Zhang;Yuvraj Agarwal;Matt Fredrikson
- 通讯作者:Han Zhang;Yuvraj Agarwal;Matt Fredrikson
Leave-one-out Unfairness
- DOI:10.1145/3442188.3445894
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Emily Black;Matt Fredrikson
- 通讯作者:Emily Black;Matt Fredrikson
Relaxing Local Robustness
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Klas Leino;Matt Fredrikson
- 通讯作者:Klas Leino;Matt Fredrikson
Consistent Counterfactuals for Deep Models
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:E. Black;Zifan Wang;Matt Fredrikson;Anupam Datta
- 通讯作者:E. Black;Zifan Wang;Matt Fredrikson;Anupam Datta
Selective Ensembles for Consistent Predictions
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Emily Black;Klas Leino;Matt Fredrikson
- 通讯作者:Emily Black;Klas Leino;Matt Fredrikson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Fredrikson其他文献
Matthew Fredrikson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Fredrikson', 18)}}的其他基金
SaTC: CORE: Large: Collaborative: Accountable Information Use: Privacy and Fairness in Decision-Making Systems
SaTC:核心:大型:协作:负责任的信息使用:决策系统中的隐私和公平
- 批准号:
1704845 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
相似国自然基金
面向实际应用的瞬态性能控制研究
- 批准号:62373060
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于金属有机框架材料的实际浓度多元C2混合气中一步纯化乙烯技术研究
- 批准号:52373216
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于界面实际状态的粗糙表面静摩擦多尺度研究
- 批准号:12302141
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实际大气条件下前体物对二次有机气溶胶的生成贡献研究
- 批准号:
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:
环回差分相位量子密钥分发协议的实际安全性研究
- 批准号:12304563
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Scalable Consensus Protocol Design with Accountability and Privacy under Practical Failure Models
职业:在实际失败模型下具有责任和隐私的可扩展共识协议设计
- 批准号:
2237814 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Vending machine Naloxone Distribution for Your community (VENDY): Increasing reach and implementation of naloxone distribution
社区自动售货机纳洛酮配送 (VENDY):扩大纳洛酮配送的覆盖范围和实施
- 批准号:
10506767 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Vending machine Naloxone Distribution for Your community (VENDY): Increasing reach and implementation of naloxone distribution
社区自动售货机纳洛酮配送 (VENDY):扩大纳洛酮配送的覆盖范围和实施
- 批准号:
10664040 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
CAREER: Practical Control Engineering Principles to Improve the Security and Privacy of Cyber-Physical Systems
职业:提高网络物理系统安全性和隐私性的实用控制工程原理
- 批准号:
1931573 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant