CAREER: Neural Network-Inspired Information Processing Beyond the Binary Digital Abstraction
职业:超越二进制数字抽象的神经网络启发信息处理
基本信息
- 批准号:1942900
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project approaches the question of higher performance and better energy efficiency in electronic chip design with two key insights from biological systems: non-Boolean information encoding (analog processing in brain), and co-localized memory and computation (as in brain synapses). The specific objective of this project is to create a design framework for efficient information processing with intrinsic non-binary representations and in-memory memory and computation. If successful, this project can shed light on the fundamental role of information encoding and its physical implementation in determining system energy efficiency, as well as provide practical design automation methodology to infuse computation and learning into the analog/mixed-signal (AMS) domain before the digitalization step. Apart from its technological impacts, the integrated educational plan of this project is to empower students from all backgrounds with interdisciplinary experience and to cultivate a community of lifelong learners with social awareness.The project will enable joint optimization of circuit, architecture, and algorithm in a seamless manner across wide-range of applications including in-memory computing (IMC) and near-sensor processing (NSP), and consists of three major research thrusts: (1) to advance AMS design automation, novel neural network-inspired model abstraction, and hardware substrate will be developed to enable a streamlined design flow that uses AMS circuits as building blocks for information processing; (2) to support flexible and efficient in-memory computing architecture, this project will build intelligent and malleable peripheral interfaces and compilation framework by leveraging the AMS design methodology developed earlier; (3) to address the energy efficiency challenge in resource-constrained sensor systems, it will explore a context-aware analog-to-information frontend design by developing efficient near-sensor processing with multiple signal channels and multiple sensing modalities. These will serve as building blocks towards understanding the holistic interactions and design trade-offs of performance, efficiency, safety, and security in heterogeneous systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过生物系统的两个关键见解:非树状信息编码(大脑中的模拟处理)以及共定位的内存和计算(如大脑突触中),从而解决了电子芯片设计中高性能和更好的能源效率的问题。该项目的具体目标是创建一个设计框架,以使用内在的非二进制表示以及内存内存和计算进行有效的信息处理。如果成功,该项目可以阐明信息编码的基本作用及其在确定系统能效中的物理实施的基本作用,并提供实用的设计自动化方法,以在数字化步骤之前将计算和学习注入模拟/混合信号(AMS)域中。 Apart from its technological impacts, the integrated educational plan of this project is to empower students from all backgrounds with interdisciplinary experience and to cultivate a community of lifelong learners with social awareness.The project will enable joint optimization of circuit, architecture, and algorithm in a seamless manner across wide-range of applications including in-memory computing (IMC) and near-sensor processing (NSP), and consists of three major research thrusts: (1)将开发以新型神经网络启发的模型抽象和硬件基板的发展,以启用简化的设计流,该流程使用AMS电路作为信息处理; (2)为了支持灵活有效的内存计算体系结构,该项目将通过利用早期开发的AMS设计方法来构建智能且可延展的外围界面和编译框架; (3)为了应对资源受限的传感器系统中的能源效率挑战,它将通过开发有效的近传感器处理和多种信号通道和多个感应方式来探索上下文感知的模拟信息前端设计。这些将成为理解异质系统绩效,效率,安全和安全性的整体互动和设计权衡的基础。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural-PIM: Efficient Processing-In-Memory With Neural Approximation of Peripherals
- DOI:10.1109/tc.2021.3122905
- 发表时间:2022-01
- 期刊:
- 影响因子:3.7
- 作者:Weidong Cao;Yilong Zhao;Adith Boloor;Yinhe Han;Xuan Zhang;Li Jiang
- 通讯作者:Weidong Cao;Yilong Zhao;Adith Boloor;Yinhe Han;Xuan Zhang;Li Jiang
LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge
- DOI:10.1145/3579371.3589089
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Tianrui Ma;Adith Boloor;Xiangxing Yang;Weidong Cao;Patrick Williams;Nan Sun;Ayan Chakrabarti;
- 通讯作者:Tianrui Ma;Adith Boloor;Xiangxing Yang;Weidong Cao;Patrick Williams;Nan Sun;Ayan Chakrabarti;
Hercules: Heterogeneity-Aware Inference Serving for At-Scale Personalized Recommendation
- DOI:10.48550/arxiv.2203.07424
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Liu Ke;Udit Gupta;Mark Hempstead;Carole-Jean Wu;Hsien-Hsin S. Lee;Xuan Zhang
- 通讯作者:Liu Ke;Udit Gupta;Mark Hempstead;Carole-Jean Wu;Hsien-Hsin S. Lee;Xuan Zhang
RoSE: Robust Analog Circuit Parameter Optimization with Sampling-Efficient Reinforcement Learning
- DOI:10.1109/dac56929.2023.10247991
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Jian Gao;Weidong Cao;Xuan Zhang
- 通讯作者:Jian Gao;Weidong Cao;Xuan Zhang
Domain knowledge-infused deep learning for automated analog/radio-frequency circuit parameter optimization
- DOI:10.1145/3489517.3530501
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Weidong Cao;M. Benosman;Xuan Zhang;Rui Ma
- 通讯作者:Weidong Cao;M. Benosman;Xuan Zhang;Rui Ma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuan Zhang其他文献
Predicting population trends of birds worldwide with big data and machine learning
利用大数据和机器学习预测全球鸟类种群趋势
- DOI:
10.1111/ibi.13045 - 发表时间:
2022 - 期刊:
- 影响因子:2.1
- 作者:
Xuan Zhang;Andrew J. Campomizzi;Zoé M. Lebrun‐Southcott - 通讯作者:
Zoé M. Lebrun‐Southcott
Regioselective Friedel–Crafts Acylation of Indoles Catalysed by Zinc Oxide in an Ionic Liquid
离子液体中氧化锌催化吲哚的区域选择性傅克酰化
- DOI:
10.3184/174751912x13460004925054 - 发表时间:
2012 - 期刊:
- 影响因子:1.4
- 作者:
Li;Fengping Yi;Jian;Xuan Zhang;Zhen Wang - 通讯作者:
Zhen Wang
The Effects of Macro News on Exchange Rates Volatilities: Evidence from BRICS Countries
宏观新闻对汇率波动的影响:来自金砖国家的证据
- DOI:
10.1080/1540496x.2019.1680540 - 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
Zhitao Lin;Ruolan Ouyang;Xuan Zhang - 通讯作者:
Xuan Zhang
Analysis-synthesis of the phonocardiogram based on the matching pursuit method
基于匹配追踪法的心音图分析合成
- DOI:
10.1109/10.704865 - 发表时间:
1998 - 期刊:
- 影响因子:4.6
- 作者:
Xuan Zhang;Louis;L. Senhadji;Howard C. Lee;J. Coatrieux - 通讯作者:
J. Coatrieux
Preparation and Properties of Novel Sulfonated Poly (phenylene arylene) (SPA) Membranes for Fuel Cell Applications
用于燃料电池应用的新型磺化聚(亚苯基亚芳基)(SPA)膜的制备和性能
- DOI:
10.1109/icdma.2011.213 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Xuan Zhang;Ya;Zhaoxia Hu;Shanshan Chen;Y. Ling;Shouwen Chen - 通讯作者:
Shouwen Chen
Xuan Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuan Zhang', 18)}}的其他基金
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2416375 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2328855 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Atmospheric Lifecycle of Highly Oxygenated Multifunctional Compounds
高含氧多功能化合物的大气生命周期
- 批准号:
2131199 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Medium: Modular Power Orchestration at the Meso-scale
CPS:中:中观规模的模块化电源编排
- 批准号:
1739643 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: SaTC: Investigation of Side-Channel Attack Vulnerability in Near-Threshold Computing Systems
CRII:SaTC:近阈值计算系统中的侧通道攻击漏洞调查
- 批准号:
1657562 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
深度神经网络可解释分析度量及视觉高风险领域应用研究
- 批准号:62372215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
适用于高分辨原子像中氧八面体转动定量分析的深度卷积神经网络构造方法学研究
- 批准号:52301021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
- 批准号:62372183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
汉语韵律功能的神经网络损伤与重塑机制研究
- 批准号:82371474
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
- 批准号:
10706026 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: