CCF: EAGER: DeepGreen: Modeling and Boosting Accelerated Computing on Liquid Immersion Cooled HPC Systems

CCF:EAGER:DeepGreen:液浸冷却 HPC 系统的建模和加速加速计算

基本信息

  • 批准号:
    1942182
  • 负责人:
  • 金额:
    $ 26.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Power and thermal issues have become critical design constraints that limit performance, scalability, and affordability for high performance computing systems and datacenters. It is urgent to address this challenge as servers are increasingly dense and employing accelerators. Liquid immersion cooling is a potential solution, due to its significantly better thermal conduction and lower power demand than traditional air cooling. This project explores immersion cooling to boost energy efficiency, computing capacity, and reliability of dense servers with multicore and manycore processors and accelerators. It engages both graduate and undergraduate students in research, and inspires and fosters the next generation workforce in technology & engineering. This project promotes green computing, which seeks to reduce energy cost of servers and datacenters. The project features close collaboration with a liquid immersion cooling vendor and will help technology innovation and transfer. This project targets dense servers comprising accelerators such as graphics processing units (GPUs), tensor processing units (TPUs), field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs). It explores advanced machine learning to automatically learn from multi-physics, diverse data the impact of immersion cooling on performance, power, and thermal, and design model-assisted management schemes to meet various optimization objectives including energy efficiency, performance, and hotspot elimination. Completion of this project will advance the state-of-the-art accelerated computing and datacenter cooling in multiple aspects, including quantitative and comprehensive understanding of the benefits of immersion cooling, more accurate performance, power, and thermal modeling for accelerated systems, and intelligent management software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
功耗和散热问题已成为限制高性能计算系统和数据中心的性能、可扩展性和经济性的关键设计约束。随着服务器越来越密集并使用加速器,解决这一挑战迫在眉睫。液浸冷却是一种潜在的解决方案,因为它比传统空气冷却具有更好的导热性和更低的功耗。该项目探索浸入式冷却,以提高具有多核和众核处理器和加速器的密集服务器的能源效率、计算能力和可靠性。它让研究生和本科生参与研究,并激励和培养下一代技术和工程劳动力。该项目促进绿色计算,旨在降低服务器和数据中心的能源成本。该项目与液浸冷却供应商密切合作,将有助于技术创新和转移。该项目针对密集服务器,包括图形处理单元 (GPU)、张量处理单元 (TPU)、现场可编程门阵列 (FPGA) 和专用集成电路 (ASIC) 等加速器。它探索先进的机器学习,从多物理场、多样化的数据中自动学习浸入式冷却对性能、功率和热量的影响,并设计模型辅助管理方案,以满足包括能源效率、性能和热点消除在内的各种优化目标。该项目的完成将在多个方面推进最先进的加速计算和数据中心冷却,包括定量和全面地了解浸没式冷却的好处,加速系统更准确的性能、功耗和热建模,以及智能该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Ge其他文献

A Review of Research on the Effects of Residential Environment on the Health of Older Adults from a Neuroscience Perspective
神经科学视角下居住环境对老年人健康影响的研究综述
Minimizing Nonconvex Population Risk from Rough Empirical Risk
最小化粗略经验风险中的非凸总体风险
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chi Jin;Lydia T. Liu;Rong Ge;Michael I. Jordan
  • 通讯作者:
    Michael I. Jordan
Provable Algorithms for Inference in Topic Models
主题模型中的可证明推理算法
Fingerprinting Anomalous Computation with RNN for GPU-accelerated HPC Machines*
针对 GPU 加速 HPC 机器使用 RNN 进行指纹异常计算*
DeepPower: Non-intrusive and Deep Learning-based Detection of IoT Malware Using Power Side Channels

Rong Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Ge', 18)}}的其他基金

CAREER: Optimization Landscape for Non-convex Functions - Towards Provable Algorithms for Neural Networks
职业:非凸函数的优化景观 - 走向可证明的神经网络算法
  • 批准号:
    1845171
  • 财政年份:
    2019
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Continuing Grant
AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Towards Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:走向具有可证明和可解释保证的算法
  • 批准号:
    1704656
  • 财政年份:
    2017
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Continuing Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
  • 批准号:
    1453775
  • 财政年份:
    2015
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
  • 批准号:
    1551262
  • 财政年份:
    2015
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
  • 批准号:
    1551511
  • 财政年份:
    2015
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
  • 批准号:
    1305382
  • 财政年份:
    2013
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: EEDAG: Exploring Energy-Efficient Parallel Tasks Generation and Scheduling for Heterogeneous Multicore Systems
CSR:小型:协作研究:EEDAG:探索异构多核系统的节能并行任务生成和调度
  • 批准号:
    1116691
  • 财政年份:
    2011
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant

相似国自然基金

渴望及其对农村居民收入差距的影响研究
  • 批准号:
    71903117
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
  • 批准号:
    71502075
  • 批准年份:
    2015
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 26.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了