CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
基本信息
- 批准号:1453775
- 负责人:
- 金额:$ 45.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Highly efficient and scalable computing systems are crucial to scientific discovery and technology innovation critical to national security and human society. However, the scalability of HPC systems is increasingly constrained by the power requirement and the necessity to limit the power density of components and server rooms. Comprising millions of components, today?s HPC systems already consume megawatts of power; to meet an insatiate demand for performance from mission-critical applications, future systems will consist of even more components and consume more power. To resolve the conflicting needs of scaling performance and limiting power, this research develops enabling technology for efficient and scalable computing on emerging and future computer systems bounded by power budgets.The proposed power-bounded HPC approach recognizes power as a scarce resource and exploits hardware overprovisioning to scale performance within a power budget. Targeting at emerging heterogeneous HPC clusters comprising power-aware multicore CPUs and manycore accelerators, this research studies how to utilize all available power to maximize performance and power efficiency at component, node, and cluster levels for a wide range of applications. Specifically, this research (1) designs a novel application-aware cross-component scheduling system for power-bounded multicore computing, (2) creates a cooperative hybrid computing framework for power-bounded heterogeneous computing, and (3) develops analytical models and techniques to support large scale power-bounded computing. The completion of this research promotes novel system and software designs that efficiently utilize every watt of power on computation; the resulting analytical models form the theoretical foundation for designing future HPC systems, architectures, and building blocks. This project integrates educational components that engage graduate and undergraduate students in innovative HPC research, and broaden the participation of underrepresented and K-12 students.
高效且可扩展的计算系统对于科学发现和技术创新至关重要,而这对国家安全和人类社会至关重要。然而,HPC 系统的可扩展性越来越受到功率要求以及限制组件和服务器机房功率密度的必要性的限制。当今的 HPC 系统由数百万个组件组成,功耗已经达到兆瓦。为了满足关键任务应用程序对性能的不断要求,未来的系统将包含更多的组件并消耗更多的功率。为了解决扩展性能和限制功耗之间的矛盾需求,本研究开发了在受功率预算限制的新兴和未来计算机系统上进行高效和可扩展计算的支持技术。所提出的功率受限 HPC 方法将功率视为稀缺资源,并利用硬件过度配置在功率预算内扩展性能。本研究针对由功耗感知多核 CPU 和众核加速器组成的新兴异构 HPC 集群,研究如何利用所有可用功率来最大限度地提高各种应用的组件、节点和集群级别的性能和能效。具体来说,本研究(1)设计了一种用于功率有限多核计算的新型应用感知跨组件调度系统,(2)创建了用于功率有限异构计算的协作混合计算框架,以及(3)开发了分析模型和技术支持大规模功率受限计算。这项研究的完成促进了新颖的系统和软件设计,可以有效地利用每一瓦的计算功率;由此产生的分析模型构成了设计未来 HPC 系统、架构和构建块的理论基础。该项目整合了教育部分,让研究生和本科生参与创新 HPC 研究,并扩大代表性不足的学生和 K-12 学生的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Ge其他文献
A Review of Research on the Effects of Residential Environment on the Health of Older Adults from a Neuroscience Perspective
神经科学视角下居住环境对老年人健康影响的研究综述
- DOI:
10.25236/ajee.2024.060101 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rong Ge - 通讯作者:
Rong Ge
Minimizing Nonconvex Population Risk from Rough Empirical Risk
最小化粗略经验风险中的非凸总体风险
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chi Jin;Lydia T. Liu;Rong Ge;Michael I. Jordan - 通讯作者:
Michael I. Jordan
Provable Algorithms for Inference in Topic Models
主题模型中的可证明推理算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Arora;Rong Ge;Frederic Koehler;Tengyu Ma;Ankur Moitra - 通讯作者:
Ankur Moitra
Fingerprinting Anomalous Computation with RNN for GPU-accelerated HPC Machines*
针对 GPU 加速 HPC 机器使用 RNN 进行指纹异常计算*
- DOI:
10.1109/iiswc47752.2019.9042165 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Pengfei Zou;Ang Li;K. Barker;Rong Ge - 通讯作者:
Rong Ge
DeepPower: Non-intrusive and Deep Learning-based Detection of IoT Malware Using Power Side Channels
- DOI:
10.1145/3320269.3384727 - 发表时间:
2020-10-05 - 期刊:
- 影响因子:0
- 作者:
Fei Ding;Hongda Li;Rong Ge - 通讯作者:
Rong Ge
Rong Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Ge', 18)}}的其他基金
CAREER: Optimization Landscape for Non-convex Functions - Towards Provable Algorithms for Neural Networks
职业:非凸函数的优化景观 - 走向可证明的神经网络算法
- 批准号:
1845171 - 财政年份:2019
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CCF: EAGER: DeepGreen: Modeling and Boosting Accelerated Computing on Liquid Immersion Cooled HPC Systems
CCF:EAGER:DeepGreen:液浸冷却 HPC 系统的建模和加速加速计算
- 批准号:
1942182 - 财政年份:2019
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Towards Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:走向具有可证明和可解释保证的算法
- 批准号:
1704656 - 财政年份:2017
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
- 批准号:
1551262 - 财政年份:2015
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
- 批准号:
1551511 - 财政年份:2015
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
- 批准号:
1305382 - 财政年份:2013
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: EEDAG: Exploring Energy-Efficient Parallel Tasks Generation and Scheduling for Heterogeneous Multicore Systems
CSR:小型:协作研究:EEDAG:探索异构多核系统的节能并行任务生成和调度
- 批准号:
1116691 - 财政年份:2011
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
相似国自然基金
基于肠源性HDL3调控LPS介导Kupffer-肝细胞cross-talk探讨脾虚膏脂转输障碍的分子机制
- 批准号:82374423
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
- 批准号:82360199
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
冷应激诱导RNA结合蛋白CIRBP在三叉神经病理痛中的作用和机制研究
- 批准号:82371217
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
电针调控三叉神经通路中NGF/TRPV1介导的干眼神经痛作用机制研究
- 批准号:82305377
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
解螺旋酶HX在DSB末端修切及停滞复制叉保护中的功能研究
- 批准号:32371354
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Taming Wireless Devices Cross-Layer Errors with Assistive Networked Edges
职业:利用辅助网络边缘解决无线设备跨层错误
- 批准号:
2312738 - 财政年份:2023
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CAREER: Taming Wireless Devices Cross-Layer Errors with Assistive Networked Edges
职业:利用辅助网络边缘解决无线设备跨层错误
- 批准号:
2047484 - 财政年份:2021
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CAREER: Machine Learning Driven Cross-Layer Optimizations for Storage
职业:机器学习驱动的跨层存储优化
- 批准号:
1942754 - 财政年份:2020
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CAREER: Game-Theoretic Analysis and Design for Cross-Layer Cyber-Physical System Security and Resilience
职业:跨层网络物理系统安全性和弹性的博弈论分析和设计
- 批准号:
1847056 - 财政年份:2019
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
- 批准号:
1551511 - 财政年份:2015
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant