Investigation of the Room Temperature Brittle-to-Ductile Transition of Single-Crystal Silicon at Sub-Micron Length Scale Using Accelerated Molecular Dynamics
利用加速分子动力学研究亚微米长度尺度单晶硅的室温脆性转变
基本信息
- 批准号:1940614
- 负责人:
- 金额:$ 28.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As is well-known, silicon is brittle so that it shatters on impact. Due to this brittle fracture, silicon-based structures are not machined, but fabricated in a variety of artful ways. Above a critical temperature though, at about 600 °C for bulk silicon, silicon becomes ductile, i.e., it can deform plastically. Several recent experiments have found that sub-micron silicon structures exhibit plastic deformation even at room temperature. While this size-dependent brittle-to-ductile transition has a strong potential to improve the reliability and manufacturability of silicon-based nanotechnology, our current understanding of the phenomenon remains incomplete. The objective of this grant is to achieve a fundamental atomic-level understanding of the size-dependent brittle-to-ductile transition of single-crystal silicon using computational modeling. This will be accomplished by reproducing the experimental observations with atomistic simulations and then analyzing the simulation results and constructing predictive multiscale models. The knowledge and understanding obtained in this research will improve the reliability of the ubiquitous micro- and nano-electro-mechanical systems through better designs as well as cost-efficient manufacturing processes, which will have significant impact on the national economy as the global nanotechnology market is estimated to reach $90.5 billion by 2021. This grant will also be used to engage undergraduates in research by leveraging the women in science and engineering summer research program and the co-op program, respectively, at the University of Cincinnati.In this study, accelerated molecular dynamics simulations will be performed to unveil the atomic-scale mechanisms responsible for the room-temperature plastic deformation of single-crystal silicon at sub-micrometer scale. Computational models of single-notched blocks and nanowires will be considered to analyze the effects of various key factors such as temperature, size, geometry, loading rate, and free surface structures and oxide layers. To carry out the simulations under near-identical experimental conditions, an accelerated molecular dynamics simulation method called hyperdynamics as well as a spatial multi-scale quasi-continuum method will be employed. The outcomes of this research will enable investigation of other brittle materials such as sapphire and zirconia whose machinability has also been an ongoing issue.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
众所周知,硅很脆,因此撞击会造成影响。由于这种脆性裂缝,基于硅的结构不是加工的,而是用各种巧妙的方式制造的。但是,在临界温度以上,在大约600°C下,硅硅变成了延展性,即可以塑料变形。最近的一些实验发现,即使在室温下,亚微米硅结构也会暴露出塑性变形。尽管这种依赖大小的脆性转变具有提高基于硅的纳米技术的可靠性和制造的强大潜力,但我们目前对现象的理解仍然不完整。这项赠款的目的是使用计算建模实现对单晶硅的脆性脆性转变的基本原子水平的理解。这将通过使用原子模拟再现实验观测来实现,然后分析模拟结果并构建预测性的多尺度模型。这项研究中获得的知识和理解将通过更好的设计以及成本效益的制造过程来提高无处不在的微型和纳米电子机械系统的可靠性,这将对国民经济产生重大影响,因为全球纳米技术市场估计将在2021年及其研究中涉及妇女的研究,并将其用于跨越计划。在这项研究中,将分别在辛辛那提大学的合作计划进行加速的分子动力学模拟,以揭示负责在子微米尺度下负责单晶硅单硅硅的原子尺度机制。将考虑将单一障碍物和纳米线的计算模型分析各种关键因素(例如温度,大小,几何,加载速率,自由表面结构和氧化物层)的影响。为了在近乎相同的实验条件下进行模拟,将采用一种称为“超型动力学”的加速分子动力学模拟方法以及一种空间多尺度的准循环方法。这项研究的结果将使其他脆性材料(例如蓝宝石和氧化锆的能力)的投资也是一个持续的问题。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估而被视为珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Woo Kyun Kim其他文献
Theoretical and molecular dynamics studies of critical resolved shear stress for rhombohedral twinning of sapphire
- DOI:
10.1016/j.commatsci.2024.113278 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Dalei Xi;Yiyang Du;Aditya Nagaraj;Suk Bum Kwon;Dae Nyoung Kim;Sangkee Min;Woo Kyun Kim - 通讯作者:
Woo Kyun Kim
A practical perspective on the implementation of hyperdynamics for accelerated simulation.
加速模拟超动力学实施的实用视角。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.4
- 作者:
Woo Kyun Kim;M. Falk - 通讯作者:
M. Falk
Antimicrobial and immunomodulatory effects of tannic acid supplementation in broilers infected with Salmonella Typhimurium.
- DOI:
10.1016/j.psj.2022.102111 - 发表时间:
2022-11 - 期刊:
- 影响因子:4.4
- 作者:
Janghan Choi;Marshall, B.;Hanseo Ko;Hanyi Shi;Kumar Singh, A.;Harshavardhan Thippareddi;Holladay, S.;Gogal, R. M.;Woo Kyun Kim - 通讯作者:
Woo Kyun Kim
The potential to reduce poultry nitrogen emissions with specific uricase egg yolk feed grade antibodies
使用特定尿酸酶蛋黄饲料级抗体减少家禽氮排放的潜力
- DOI:
10.1017/s0043933913000056 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Woo Kyun Kim;Paul H. Patterson;J. Rodríguez;S. C. Ricke - 通讯作者:
S. C. Ricke
Effects of phytase supplementation on broilers fed with calcium and phosphorus-reduced diets, challenged with <em>Eimeria maxima</em> and <em>Eimeria acervulina</em>: influence on growth performance, body composition, bone health, and intestinal integrity
- DOI:
10.1016/j.psj.2024.103511 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Hanyi Shi;Taina Lopes;Yuguo Hou Tompkins;Guanchen Liu;Janghan Choi;Milan Kumar Sharma;Woo Kyun Kim - 通讯作者:
Woo Kyun Kim
Woo Kyun Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Woo Kyun Kim', 18)}}的其他基金
Collaborative Research: Understanding Subsurface Damage and Residual Stress during Ultra-Precision Machining of Ceramics
合作研究:了解陶瓷超精密加工过程中的次表面损伤和残余应力
- 批准号:
2009150 - 财政年份:2020
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Accelerated Molecular Dynamics Study of the Role of Crystalline Defects in Friction of 2-Dimensional Materials
晶体缺陷在二维材料摩擦中作用的加速分子动力学研究
- 批准号:
1662666 - 财政年份:2017
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Accelerated Large-Scale Simulation Study of Atomic-Scale Wear Using Hyper-Quasicontinum
合作研究:使用超准连续加速原子尺度磨损的大规模模拟研究
- 批准号:
1463038 - 财政年份:2015
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
相似国自然基金
基于自然能的被动再生干燥床与双层调湿结构墙体房间耦合的湿调节机制研究
- 批准号:52378099
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
语言声房间和厅堂的语音传输指数(STI)评价阈值研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
语言声房间和厅堂的语音传输指数(STI)评价阈值研究
- 批准号:52278092
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
夏热冬暖地区住宅高反射涂料平屋顶房间热环境调控机理研究
- 批准号:51878088
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于分流扬声器阵列的低频声控制
- 批准号:11874218
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Investigation of electrochemical reaction mechanism of non-oxides for damage recovery function at room temperature
室温损伤恢复功能非氧化物电化学反应机理研究
- 批准号:
23H01688 - 财政年份:2023
- 资助金额:
$ 28.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of vibrating sample magnetometry toward cellular activity imaging by room-temperature magnetometers
室温磁力计振动样品磁力测量对细胞活动成像的研究
- 批准号:
15K14003 - 财政年份:2015
- 资助金额:
$ 28.77万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Investigation of optimal gel conditions for stem cell preservation at room temperature and scaling up of selected methodology
研究室温下保存干细胞的最佳凝胶条件并扩大所选方法的规模
- 批准号:
BB/K011111/2 - 财政年份:2014
- 资助金额:
$ 28.77万 - 项目类别:
Research Grant
AccuTemp Sensor: Radiometry based non-invasive continuous core body temperature m
AccuTemp 传感器:基于辐射测量的无创连续核心体温测量仪
- 批准号:
8454842 - 财政年份:2013
- 资助金额:
$ 28.77万 - 项目类别:
Investigation of slater material that shows sudden change from electrically conducting to insulating nature at room temperature
对在室温下表现出从导电性质突然转变为绝缘性质的石板材料的研究
- 批准号:
25289233 - 财政年份:2013
- 资助金额:
$ 28.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)