The Covers, Symmetries, and Combinatorics of Manifolds

流形的覆盖、对称性和组合学

基本信息

  • 批准号:
    1937969
  • 负责人:
  • 金额:
    $ 9.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Geometry and topology are concerned with the study of shapes. In Euclidean geometry, we study objects such as circles and rectangles. A circle is highly symmetric; for example, any rotation about the center of the circle preserves the circle. A rectangle, though still symmetric in some ways, has less symmetry than the circle; its two sides may have different lengths. In low-dimensional topology we study more complicated objects or spaces of two, three, and four dimensions. A central aim of this National Science Foundation funded project is to understand these spaces through symmetries. Topological objects arise naturally in other fields, including biology, chemistry, physics, and engineering. At times, the best way to understand one is via its relationship with another through what is known as a "covering map". A second project is to analyze covering maps. A challenge in studying more intricate three or four dimensional spaces is that one cannot always visualize or draw these even using a computer. It is therefore helpful to break them into building blocks. One of the projects is to do so with objects called hyperbolic 3-manifolds. In addition to the mathematical research, the PI has demonstrated a strong dedication to outreach, mentoring, and advocating for underrepresented individuals in the STEM disciplines. With the NSF travel funds she will continue to engage in opportunities inside and outside the academia directed at promoting mathematical research and education. The focus of this research project is to understand the finite degree covering spaces, the group of symmetries, and the combinatorics of hyperbolic manifolds in low dimensions. The PI plans to tackle the following projects during the funding period: (1) making effective the Virtually Haken Theorem, (2) quantifying separability properties to determine whether or not the fundamental groups of three-manifolds and the mapping class groups of closed surfaces are linear, (3) exploring infinite-type surfaces, their mapping class groups, and the actions of these groups on hyperbolic complexes, and (4) giving a combinatorial characterization for hyperbolic three-manifolds. Though the research project primarily focuses on questions in topology, geometry, and geometric group theory, the topics explored by the PI have deep connections to combinatorics, representation theory, dynamics, and topological quantum field theory (TQFT) as well.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何和拓扑与形状的研究有关。在欧几里得的几何形状中,我们研究圆形和矩形等物体。一个圆形高度对称;例如,圆圈中心的任何旋转都保留了圆。矩形虽然在某些方面仍然对称,但其对称性少于圆。它的两侧可能具有不同的长度。在低维拓扑中,我们研究了两个,三个和四个维度的更复杂的物体或空间。这个国家科学基金会资助的项目的一个核心目的是通过对称性来了解这些空间。拓扑对象自然出现在其他领域,包括生物学,化学,物理和工程。 有时,理解一个人的最佳方法是通过与另一种的关系通过所谓的“覆盖地图”。第二个项目是分析覆盖地图。研究更复杂的三个或四个维空间的挑战是,即使使用计算机,也不能始终可以看到或绘制这些空间。因此,将它们分解成构建基础是有帮助的。其中一个项目是使用称为双曲线3个manifolds的对象。 除了数学研究外,PI还表现出对STEM学科中代表性不足的个人的强烈奉献精神。借助NSF旅行资金,她将继续在学术界内外探讨致力于促进数学研究和教育的机会。该研究项目的重点是了解涵盖空间的有限程度,对称性组以及低维度双曲线歧管的组合。 PI计划在资金期间解决以下项目:(1)使实际上的定理有效,(2)量化可分离性能,以确定三个序列的基本组和封闭表面组的基本组是否是线性的双曲线三个字体的表征。尽管研究项目主要关注拓扑,几何学和几何群体理论的问题,但PI探索的主题与组合学,代表理论,动力学和拓扑量子田地理论(TQFT)以及该奖项都反映了NSF的法定任务,并通过评估基金会的智力效果,并反映了NSF的法定任务,并反映了NSF的法定任务,并反映了基金会的范围和广泛的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priyam Patel其他文献

Free products from spinning and rotating families
来自纺纱和旋转系列的免费产品
  • DOI:
    10.4171/lem/1033
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bestvina;Ryan Dickmann;G. Domat;Sanghoon Kwak;Priyam Patel;Emily Stark
  • 通讯作者:
    Emily Stark
Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in-silico-based analysis to cognize the mechanism of aggregation
基于突变的β淀粉样蛋白肽(1-42)的结构修饰和动力学研究:基于计算机的分析来认识聚集机制
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Panda;A. S. Patil;Priyam Patel;Hetalkumar Panchal
  • 通讯作者:
    Hetalkumar Panchal
Isometry groups of infinite-genus hyperbolic surfaces
无限亏格双曲曲面的等距群
  • DOI:
    10.1007/s00208-021-02164-z
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Tarik Aougab;Priyam Patel;N. Vlamis
  • 通讯作者:
    N. Vlamis
Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in<em>-</em>silico-based analysis to cognize the mechanism of aggregation
  • DOI:
    10.1016/j.gdata.2016.01.003
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pritam Kumar Panda;Abhaysinha Satish Patil;Priyam Patel;Hetalkumar Panchal
  • 通讯作者:
    Hetalkumar Panchal
Proton conduction in inkjet-printed reflectin films
喷墨印刷反射膜中的质子传导
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujia Lu;Preeta Pratakshya;Atrouli Chatterjee;X. Jia;David D. Ordinario;Long Phan;J. A. Cerna Sanchez;Rylan Kautz;Vivek Tyagi;Priyam Patel;Yegor Van Dyke;MyAnh Kaylee Dao;Justin P. Kerr;J. Long;Alex Allevato;Jessica E. Leal;E. Tseng;Ethan R. Peng;A. Reuter;Justin Couvrette;Samantha Drake;F. Omenetto;A. Gorodetsky
  • 通讯作者:
    A. Gorodetsky

Priyam Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Priyam Patel', 18)}}的其他基金

Conference: Wasatch Topology Conference
会议:沃萨奇拓扑会议
  • 批准号:
    2332419
  • 财政年份:
    2023
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Standard Grant
CAREER: The Algebra, Geometry, and Topology of Infinite Surfaces
职业:无限曲面的代数、几何和拓扑
  • 批准号:
    2046889
  • 财政年份:
    2021
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Continuing Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
  • 批准号:
    1812014
  • 财政年份:
    2018
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Standard Grant

相似国自然基金

分数阶椭圆与抛物型方程解的对称性和单调性研究
  • 批准号:
    12301264
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
激光探测碱金属大自旋原子磁共振系统动力学高维对称性的理论与实验研究
  • 批准号:
    12374330
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
全国第二十届重味物理和CP破坏研讨会
  • 批准号:
    12342024
  • 批准年份:
    2023
  • 资助金额:
    8.00 万元
  • 项目类别:
    专项项目
脉冲电流作用下钛箔非对称屈服演化效应及本构建模
  • 批准号:
    52305333
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
非对称性空间分体式—阴极靶向制氢和阳极化工中间体有机电合成新体系的构建及机理研究
  • 批准号:
    22308363
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
  • 批准号:
    1812014
  • 财政年份:
    2018
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Standard Grant
Combinatorics of partially ordered sets and quantum symmetries
偏序集和量子对称性的组合
  • 批准号:
    16K05083
  • 财政年份:
    2016
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable models,algebraic combinatorics and symmetries
可积模型、代数组合和对称性
  • 批准号:
    9428-2005
  • 财政年份:
    2011
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable models,algebraic combinatorics and symmetries
可积模型、代数组合和对称性
  • 批准号:
    9428-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable models,algebraic combinatorics and symmetries
可积模型、代数组合和对称性
  • 批准号:
    9428-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 9.12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了