CAREER: The Algebra, Geometry, and Topology of Infinite Surfaces

职业:无限曲面的代数、几何和拓扑

基本信息

  • 批准号:
    2046889
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This mathematics research project focuses on questions in geometry and topology, both of which are concerned with the study of the shapes of objects. The project studies the properties of surfaces, which fall into two categories: finite-type and infinite-type. The theory of finite-type surfaces has been historically more developed than that of infinite-type surfaces, partly because there is a simple classification of all finite-type surfaces. The primary goal of the research project is to significantly deepen understanding of infinite-type surfaces, which are ubiquitous in topology, geometry, and dynamics. The first part is aimed at characterizing their geometric symmetries (isometry groups). The second and third parts concern their topological symmetries (mapping class groups), with the long-term goal of completely classifying the different types of topological symmetries. The educational component of this project consists of three parts. The first part is a research training and professional development graduate student workshop for members of groups underrepresented in algebra, geometry, topology, and number theory. This workshop is aimed at early-career graduate students and intended to serve as a bridge between successful programs like the EDGE summer program and research-focused workshops for advanced graduate students. One of the goals is to support the participants in their transition between coursework and research-based mathematics. The second part of the educational component is the expansion of an existing high school outreach program in Salt Lake City that will serve students from the most diverse districts of the city. The third part is a speaker series featuring prominent individuals from groups underrepresented in STEM. The research focus of this project is on infinite-type surfaces and their groups of symmetries. Infinite-type surfaces arise naturally in many contexts, such as in the study of group actions on the plane, and are intimately related to the study of quasiconformal maps. The first part of this project, aimed at characterizing isometry groups of infinite-type surfaces, is inspired by Felix Klein's suggestion from 1872 that groups of geometric symmetries be used to better understand the geometry of Riemann surfaces. The results regarding isometry groups are used in-turn to produce algebraic invariants of the mapping class group. This group can be thought of as the group of topological symmetries of the surface and is the focus of the second and third parts of the project. In particular, the second part is aimed at producing algebraic invariants of the mapping class groups of infinite-type surfaces via subgroup constructions, and the third part focuses on using the actions of mapping class groups on hyperbolic graphs to produce a Nielsen-Thurston type classification for these surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该数学研究项目侧重于几何和拓扑问题,这两个问题都与物体形状的研究有关。该项目研究表面的属性,表面分为两类:有限型和无限型。有限型曲面理论在历史上比无限型曲面理论更加发达,部分原因是所有有限型曲面都有一个简单的分类。该研究项目的主要目标是显着加深对无限型曲面的理解,无限型曲面在拓扑、几何和动力学中普遍存在。第一部分旨在表征它们的几何对称性(等距群)。第二和第三部分涉及它们的拓扑对称性(映射类群),长期目标是对不同类型的拓扑对称性进行完全分类。 该项目的教育部分由三部分组成。第一部分是为代数、几何、拓扑和数论领域代表性不足的群体成员举办的研究培训和专业发展研究生研讨会。该研讨会面向处于职业生涯早期的研究生,旨在充当 EDGE 暑期项目等成功项目与针对高级研究生的以研究为重点的研讨会之间的桥梁。目标之一是支持参与者在课程作业和基于研究的数学之间的过渡。教育部分的第二部分是扩展盐湖城现有的高中外展计划,该计划将为来自该市最多元化地区的学生提供服务。第三部分是一个演讲系列,邀请来自 STEM 领域代表性不足的群体的杰出人士参加。该项目的研究重点是无限型曲面及其对称群。无限型曲面在许多情况下自然出现,例如在平面上群作用的研究中,并且与拟共形映射的研究密切相关。该项目的第一部分旨在表征无限型曲面的等距群,其灵感来自于 Felix Klein 在 1872 年提出的建议,即使用几何对称群来更好地理解黎曼曲面的几何形状。关于等距组的结果依次用于产生映射类组的代数不变量。该群可以被认为是表面的拓扑对称群,是该项目第二部分和第三部分的重点。特别是,第二部分旨在通过子群构造产生无限型曲面的映射类群的代数不变量,第三部分侧重于使用双曲图上的映射类群的作用来产生 Nielsen-Thurston 类型分类该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priyam Patel其他文献

Isometry groups of infinite-genus hyperbolic surfaces
无限亏格双曲曲面的等距群
  • DOI:
    10.1007/s00208-021-02164-z
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Tarik Aougab;Priyam Patel;N. Vlamis
  • 通讯作者:
    N. Vlamis
Free products from spinning and rotating families
来自纺纱和旋转系列的免费产品
  • DOI:
    10.4171/lem/1033
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bestvina;Ryan Dickmann;G. Domat;Sanghoon Kwak;Priyam Patel;Emily Stark
  • 通讯作者:
    Emily Stark
Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in-silico-based analysis to cognize the mechanism of aggregation
基于突变的β淀粉样蛋白肽(1-42)的结构修饰和动力学研究:基于计算机的分析来认识聚集机制
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Panda;A. S. Patil;Priyam Patel;Hetalkumar Panchal
  • 通讯作者:
    Hetalkumar Panchal
Proton conduction in inkjet-printed reflectin films
喷墨印刷反射膜中的质子传导
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujia Lu;Preeta Pratakshya;Atrouli Chatterjee;X. Jia;David D. Ordinario;Long Phan;J. A. Cerna Sanchez;Rylan Kautz;Vivek Tyagi;Priyam Patel;Yegor Van Dyke;MyAnh Kaylee Dao;Justin P. Kerr;J. Long;Alex Allevato;Jessica E. Leal;E. Tseng;Ethan R. Peng;A. Reuter;Justin Couvrette;Samantha Drake;F. Omenetto;A. Gorodetsky
  • 通讯作者:
    A. Gorodetsky
Residual finiteness growths of virtually special groups
几乎特殊群的剩余有限增长
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Bou;M. Hagen;Priyam Patel
  • 通讯作者:
    Priyam Patel

Priyam Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Priyam Patel', 18)}}的其他基金

Conference: Wasatch Topology Conference
会议:沃萨奇拓扑会议
  • 批准号:
    2332419
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
  • 批准号:
    1937969
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
  • 批准号:
    1812014
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丛代数的范畴化与散射图方法
  • 批准号:
    12301048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3-李代数的上同调理论及其应用
  • 批准号:
    12301034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一类正规整表代数的研究
  • 批准号:
    12301021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
李代数与有限W代数的Whittaker型表示和有限维表示
  • 批准号:
    12371026
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Higher Algebra and Symplectic Geometry
职业:高等代数和辛几何
  • 批准号:
    2044557
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
A Virtual Project-Based Learning Sandbox for Mimetics and Medically Inspired Classroom Engineering (MiMICRE)
用于模仿和医学启发课堂工程的基于虚拟项目的学习沙盒 (MiMICRE)
  • 批准号:
    10254459
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry
职业:交换代数和代数几何中的分类和经典对称性
  • 批准号:
    1849173
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry
职业:交换代数和代数几何中的分类和经典对称性
  • 批准号:
    1651327
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Matroids, polytopes, and their valuations in algebra and geometry
职业:拟阵、多面体及其在代数和几何中的估值
  • 批准号:
    0956178
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了