Collaborative Research: Selection Methods for Algebraic Design of Experiments
协作研究:实验代数设计的选择方法
基本信息
- 批准号:1937717
- 负责人:
- 金额:$ 6.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-02 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data science has emerged as an important field for making decisions based on data collected from sectors as varied as healthcare and housing. Though data are plentiful, thanks to phone apps, merchant loyalty cards, and social media accounts, there is still a question of whether more data translates to more knowledge. Furthermore collection and storage can be problematic especially when data are sensitive, as it is often the case with clinical trials and genetic experiments. The problem of selecting information-rich data becomes crucial for creating models that can reliably predict the outcome of future experiments. Few results have been published on the amount of necessary data, and currently there are no guidelines for generating specific data sets which would unambiguously identify a predictive model. As a first step towards developing a complete theory, the PIs will focus on models described by finite-valued nonlinear polynomial functions. (For example, the internal "function" in WedMD's Symptom Checker returns medical conditions according to symptoms input by the user.) They will construct the smallest data sets that have a single associated polynomial model and study properties of such data sets. From these computational experiments, they will build the appropriate theory, design algorithms, and generate code that can be later developed into software complete with a graphical user interface. Graduate students will participate at the appropriate level of each component of the project. Such an experience will provide them possible topics for an MS or PhD dissertation and will very likely inspire a career-long involvement in the STEM disciplines. The theoretical results will advance the fields of design of experiments, network inference, and finite dynamical systems through the determination of criteria for selecting data sets to uniquely identify models. The algorithms will serve as a guide for experimentalists in determining the data that are needed to identify the structure of a network of interest. Such knowledge has the potential to drastically reduce wasted resources that arise from too much data with too little information.While this is the age of big data, there is still a question of whether more data translates to more knowledge. Particularly when collecting data is expensive or time consuming, as it is often the case with clinical trials and biomolecular experiments, the problem of selecting information-rich data becomes crucial for creating relevant models. Finite-state multivariate polynomial functions have successfully been used to model complex networks from discretized data; however, few results have been published on the amount of data necessary for such models, with the majority applying to Boolean models only. It is still unknown which data points explicitly identify such discrete models, and as a consequence, there are no methods for generating the specific data sets which would unambiguously identify the model. The PIs will address the issue of the minimality and specificity of data to uniquely identify discrete polynomial models by developing the appropriate theory, designing algorithms, and generating code that can be later built into software. Graduate students will participate at the appropriate level of each component of the project. This project will resolve some important computational issues in network inference and will improve experimental design and model selection by eliminating the effect of computational artifacts that arise when working with nonlinear multivariate polynomials. The theoretical results will advance the fields of design of experiments and network inference through the establishment of criteria to select data sets to uniquely identify models. The proposed work will also increase the utility of polynomial dynamical systems as models of complex networks by establishing the minimal amount of the data for unique model identification. The algorithms will serve as a guide for experimentalists in determining the data that are needed to identify the structure of a network of interest. Such knowledge has the potential to drastically reduce the number of experiments performed and to eliminate the generation of data with little intrinsic value.
数据科学已成为基于从医疗保健和住房等不同部门收集的数据做出决策的重要领域。 尽管数据很丰富,这要归功于电话应用程序,商户忠诚度卡和社交媒体帐户,但仍然存在一个问题,即是否有更多数据转化为更多知识。此外,收集和存储可能是有问题的,尤其是当数据敏感时,临床试验和基因实验通常是这种情况。 选择信息丰富的数据的问题对于创建可以可靠地预测未来实验结果的模型至关重要。关于必要数据数量的结果很少,目前尚无生成特定数据集的准则,这些数据集可以明确识别预测模型。作为发展完整理论的第一步,PI将重点关注有限价值的非线性多项式函数所描述的模型。 (例如,WEDMD症状检查器中的内部“功能”根据用户输入的症状返回医疗状况。)他们将构建具有单个相关的多项式模型和此类数据集的研究属性的最小数据集。 从这些计算实验中,它们将构建适当的理论,设计算法并生成代码,以后可以将其开发为具有图形用户界面的软件。研究生将参加项目的每个组成部分的适当水平。这样的经历将为他们提供MS或博士学位论文的可能主题,并很可能会激发职业生涯的长期参与。理论结果将通过确定选择数据集以唯一识别模型的标准来推进实验,网络推理和有限动态系统的设计领域。该算法将作为实验者的指南,以确定确定感兴趣网络的结构所需的数据。这种知识有可能大幅度减少来自太多信息的数据,而信息太少。虽然这是大数据的时代,但仍然存在一个问题,即是否有更多的数据转化为更多的知识。尤其是当收集数据昂贵或耗时时,临床试验和生物分子实验通常是这种情况,选择富含信息的数据的问题对于创建相关模型至关重要。有限状态多元多项式函数已成功地用于从离散数据中对复杂网络进行建模。但是,关于此类模型所需的数据量的结果很少,大多数仅适用于布尔模型。仍然未知哪些数据点明确识别此类离散模型,因此,没有方法可以生成特定的数据集,这些数据集将明确识别模型。 PI将通过开发适当的理论,设计算法和生成可以稍后内置到软件中的代码来解决数据的最小和特异性问题,以唯一识别离散多项式模型。研究生将参加项目的每个组成部分的适当水平。该项目将解决网络推理中的一些重要计算问题,并通过消除使用非线性多元多项式工作时会产生的计算伪像的效果来改善实验设计和模型选择。理论结果将通过建立标准来选择数据集以唯一识别模型,从而推进实验和网络推断的设计领域。提出的工作还将通过确定唯一模型标识的数据量最小的数据来增加多项式动力学系统作为复杂网络的模型的实用性。该算法将作为实验者的指南,以确定确定感兴趣网络的结构所需的数据。这种知识有可能大幅度减少执行的实验数量,并消除几乎没有内在值的数据的产生。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gröbner Bases of Convex Neural Code Ideals
凸神经代码理想的 Gröbner 基
- DOI:10.1007/978-3-030-42687-3_8
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kaitlyn Phillipson, Elena S.
- 通讯作者:Kaitlyn Phillipson, Elena S.
Quantifying the total effect of edge interventions in discrete multistate networks
- DOI:10.1016/j.automatica.2020.109453
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:D. Murrugarra;Elena S. Dimitrova
- 通讯作者:D. Murrugarra;Elena S. Dimitrova
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Dimitrova其他文献
Modular Control of Biological Networks
生物网络的模块化控制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Murrugarra;Alan Veliz;Elena Dimitrova;C. Kadelka;Matthew Wheeler;Reinhard Laubenbacher - 通讯作者:
Reinhard Laubenbacher
Elena Dimitrova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Dimitrova', 18)}}的其他基金
Collaborative Research: Selection Methods for Algebraic Design of Experiments
协作研究:实验代数设计的选择方法
- 批准号:
1720341 - 财政年份:2017
- 资助金额:
$ 6.39万 - 项目类别:
Standard Grant
Collaborative research: Data selection for unique model identification
合作研究:独特模型识别的数据选择
- 批准号:
1419038 - 财政年份:2015
- 资助金额:
$ 6.39万 - 项目类别:
Standard Grant
相似国自然基金
基于协作干扰的不可信中继网络安全传输优化理论与方法研究
- 批准号:61871327
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
业务驱动的社会化边缘计算及体验增强机理研究
- 批准号:61871062
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
用于运动想象的脑机接口深度学习模型的高效算法研究
- 批准号:61701270
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
面向多址MIMO的协作干扰策略研究
- 批准号:61771289
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
基于固定速率的多用户缓冲协作网络自适应传输模式选择策略研究
- 批准号:61701066
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Burrows as buffers: do microhabitat selection and behavior mediate desert tortoise resilience to climate change?
合作研究:洞穴作为缓冲区:微生境选择和行为是否会调节沙漠龟对气候变化的适应能力?
- 批准号:
2301677 - 财政年份:2023
- 资助金额:
$ 6.39万 - 项目类别:
Standard Grant
Collaborative Research: Intermediaries and Product Selection in the Municipal Bond Market
合作研究:市政债券市场的中介机构和产品选择
- 批准号:
2404669 - 财政年份:2023
- 资助金额:
$ 6.39万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Genomic and phenotypic responses to hurricane-mediated selection in an invasive lizard: does epistasis constrain evolution?
合作研究:RAPID:入侵蜥蜴对飓风介导的选择的基因组和表型反应:上位性是否限制进化?
- 批准号:
2349094 - 财政年份:2023
- 资助金额:
$ 6.39万 - 项目类别:
Standard Grant
Collaborative Research: EDGE FGT: Development of a Comprehensive Selection Library to Reconcile Core Metabolic Knowledge Gaps
合作研究:EDGE FGT:开发综合选择库以弥合核心代谢知识差距
- 批准号:
2319733 - 财政年份:2023
- 资助金额:
$ 6.39万 - 项目类别:
Standard Grant
Collaborative Research: EDGE FGT: Development of a Comprehensive Selection Library to Reconcile Core Metabolic Knowledge Gaps
合作研究:EDGE FGT:开发综合选择库以弥合核心代谢知识差距
- 批准号:
2319732 - 财政年份:2023
- 资助金额:
$ 6.39万 - 项目类别:
Standard Grant