RTML: Large: Real-Time Autonomic Decision Making on Sparsity-Aware Accelerated Hardware via Online Machine Learning and Approximation
RTML:大型:通过在线机器学习和近似在稀疏感知加速硬件上进行实时自主决策
基本信息
- 批准号:1937403
- 负责人:
- 金额:$ 140万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Real-time smart and autonomic decision making involves two major stages, sensing (of sensor data and then transformation into actionable knowledge) and planning (taking decisions using this knowledge). These two stages happen in both internal and external operations of an Intelligent Physical System (IPS). In case of internal operations, sensing refers to reading data from on-board sensors and planning refers to smart execution of the firmware running on the IPS. In case of external operations, sensing refers to sensing data from externally-mounted sensors and planning refers to executing the software that constitutes an application. In the sensing stage, an IPS should be able to cope with different forms of uncertainty, especially data and model uncertainties. The goal of this research project is to achieve the objectives of online autonomic decision making on sparsity-aware accelerated hardware via Real-Time Machine Learning (RTML) and approximation for a group of IPSs such as drones performing data collection and/or multi-object tracking/classification and operating in a highly dynamic environment that is difficult to model. Remarkably, the techniques adopted in this project generalize well as they can be applied to a variety of IPS domains including natural calamities, man-made disasters, and terrorist attacks. The drone-based distributed multi-object tracking/classification will enable stakeholders such as citizens, government bodies, rescue agencies, and industries to comprehend the extent of damage, and to develop more effective mitigation policies. The research will also train students including minority and underrepresented students in the field.There are three specific tasks in this project. In Task 1, a real-time decision-making approach will be proposed via online deep reinforcement learning with inherent distributed training capability; temporal and spatial correlation in streaming video will then be exploited towards real-time multi-object tracking/detection. In Task 2, novel hardware architectures will be designed to support sparse Convolution Neural Networks (CNN). Considering the dual benefits of sparsity on both lower computational and space complexity for Deep Neural Network (DNN) models, a sparsity-aware CNN accelerator can achieve significant hardware performance improvements in term of latency, throughput, and energy efficiency over non-sparsity-aware techniques. Finally, in Task 3, hardware-aware software engineering solutions will be studied for accelerated execution. The idea of leveraging compiler optimization and the underlying hardware features in combination will be investigated in order to optimize execution performance; then, data-driven modeling techniques will be presented to replace the time-consuming segments of the ML software packages with their equivalent data-driven models, namely micro-neural networks. Once these three research tasks are validated individually via principled experimentation in terms of their stated goals, they will be integrated into a unified framework, which will be thoroughly studied via multiple trials on complementary field scenarios. The project will also collaborate with a synergistic DARPA program for related hardware development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
实时智能和自主性决策涉及两个主要阶段,即传感(传感器数据,然后转换为可行的知识)和计划(使用此知识做出决策)。这两个阶段发生在智能物理系统(IPS)的内部和外部操作中。如果进行内部操作,感应是指从板载传感器中读取数据,并计划是指在IPS上运行的固件的智能执行。在外部操作的情况下,传感是指从外部安装的传感器中传感数据,并计划是指执行构成应用程序的软件。在感应阶段,IPS应该能够应对不同形式的不确定性,尤其是数据和模型不确定性。该研究项目的目的是通过实时机器学习(RTML)(RTML)实现在线自主神经决策的目标,以及一组IPS的近似值,例如无人机,例如执行数据收集和/或多动物对象跟踪/分类和在很难模拟模型的高度动态环境中运行的IPS。值得注意的是,该项目采用的技术可以很好地应用于各种IPS领域,包括自然灾害,人造灾难和恐怖袭击。基于无人机的分布式多对象跟踪/分类将使利益相关者(例如公民,政府机构,救援机构和行业)能够理解损害的程度,并制定更有效的缓解政策。这项研究还将培训包括该领域的少数民族和代表性不足的学生在内的学生。该项目有三个特定的任务。在任务1中,将通过具有固有的分布式培训能力的在线深层强化学习提出一种实时决策方法;然后,流媒体视频中的时间和空间相关性将被利用为实时多对象跟踪/检测。在任务2中,新颖的硬件体系结构将设计为支持稀疏卷积神经网络(CNN)。考虑到深度神经网络(DNN)模型对较低的计算和空间复杂性的双重好处,稀疏感知的CNN加速器可以在延迟,吞吐量和能源效率方面取得重大的硬件性能改善,而不是非sparsity-partersity-Area Area Area Area Area Area Area Area Area。最后,在任务3中,将研究硬件感知软件工程解决方案以加速执行。为了优化执行性能,将研究利用编译器优化和基础硬件功能的想法;然后,将介绍数据驱动的建模技术,以替换ML软件包的耗时段,并替换其等效数据驱动的模型,即微神经网络。一旦这三个研究任务通过其既定目标进行了有原则的实验验证,它们将被整合到一个统一的框架中,该框架将通过有关互补现场场景的多次试验进行彻底研究。该项目还将与一个协同的DARPA计划合作,以用于相关硬件开发。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dario Pompili其他文献
MOSFET-based Ultra-low-power Realization of Analog Joint Source-Channel Coding for IoTs
基于 MOSFET 的物联网模拟联合源通道编码超低功耗实现
- DOI:
10.1109/sahcn.2019.8824940 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vidyasagar Sadhu;Mehdi Rahmati;Dario Pompili - 通讯作者:
Dario Pompili
<em>Cloud-BSS</em>: Joint intra- and inter-Cluster interference cancellation in uplink 5G cellular networks
- DOI:
10.1016/j.comnet.2018.10.007 - 发表时间:
2018-12-24 - 期刊:
- 影响因子:
- 作者:
Abolfazl Hajisami;Dario Pompili - 通讯作者:
Dario Pompili
Orthogonal Signal Division Multiple Access for Multiuser Underwater Acoustic Networks
多用户水下声学网络的正交信号分割多址接入
- DOI:
10.1109/mass58611.2023.00055 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhuoran Qi;Zhile Li;Dario Pompili - 通讯作者:
Dario Pompili
A Bio-inspired Low-power Hybrid Analog/Digital Spiking Neural Networks for Pervasive Smart Cameras
适用于普及智能相机的仿生低功耗混合模拟/数字尖峰神经网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yung;Dario Pompili - 通讯作者:
Dario Pompili
Virtual-Flow Multipath Algorithms for MPLS
MPLS 的虚拟流多路径算法
- DOI:
10.1504/ijitst.2007.014832 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Dario Pompili;Caterina Scoglio;C. Shoniregun - 通讯作者:
C. Shoniregun
Dario Pompili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dario Pompili', 18)}}的其他基金
SWIFT: SMALL: xNGRAN Navigating Spectral Utilization, LTE/WiFi Coexistence, and Cost Tradeoffs in Next Gen Radio Access Networks through Cross-Layer Design
SWIFT:小型:xNGRAN 通过跨层设计实现下一代无线接入网络中的频谱利用、LTE/WiFi 共存和成本权衡
- 批准号:
2030101 - 财政年份:2020
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative: Reliable Underwater Acoustic Video Transmission Towards Human-Robot Dynamic Interaction
NeTS:媒介:协作:实现人机动态交互的可靠水下声学视频传输
- 批准号:
1763964 - 财政年份:2018
- 资助金额:
$ 140万 - 项目类别:
Continuing Grant
NRI: INT: COLLAB: Robust, Scalable, Distributed Semantic Mapping for Search-and-Rescue and Manufacturing Co-Robots
NRI:INT:COLLAB:用于搜索救援和制造协作机器人的稳健、可扩展、分布式语义映射
- 批准号:
1734362 - 财政年份:2017
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
CPS: Medium: Enabling Real-time Dynamic Control and Adaptation of Networked Robots in Resource-constrained and Uncertain Environments
CPS:中:在资源受限和不确定的环境中实现网络机器人的实时动态控制和适应
- 批准号:
1739315 - 财政年份:2017
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
NeTS: Small: Demand-Aware Dynamic Virtual Base Station Provisioning and Allocation in Cloud Radio Access Networks (C-RANs)
NeTS:小型:云无线接入网络 (C-RAN) 中的需求感知动态虚拟基站配置和分配
- 批准号:
1319945 - 财政年份:2013
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
The Seventh ACM International Conference on Underwater Networks & Systems (WUWNet'12) - Student Travel Awards
第七届ACM国际水下网络会议
- 批准号:
1255708 - 财政年份:2012
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
Collaborative Research: Towards Unified Cloud Computing and Management
协作研究:迈向统一云计算和管理
- 批准号:
1127974 - 财政年份:2011
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
CAREER: Investigating Fundamental Problems for Underwater Multimedia Communication with Application to Ocean Exploration
职业:研究水下多媒体通信的基本问题及其在海洋勘探中的应用
- 批准号:
1054234 - 财政年份:2011
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
CSR:Small:Sensor-driven Thermal-aware Autonomic Management of Instrumented Datacenters
CSR:小:传感器驱动的仪表数据中心热感知自主管理
- 批准号:
1117263 - 财政年份:2011
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
Collaborative Research: II-NEW: An Instrumented Data Center Infrastructure for Research on Cross-Layer Autonomics
协作研究:II-NEW:用于跨层自主研究的仪表化数据中心基础设施
- 批准号:
0855091 - 财政年份:2009
- 资助金额:
$ 140万 - 项目类别:
Continuing Grant
相似国自然基金
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
- 批准号:52365047
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向大跨度结构的高强多孔骨料内养护UHPC徐变性能与模型研究
- 批准号:52308231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度光学的大视场高分辨宽景深小型化显微成像
- 批准号:62301293
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
- 批准号:12374318
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
二维氮化钼/磷化钼面内异质结构催化材料的设计合成及大电流密度析氢性能研究
- 批准号:22379116
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 140万 - 项目类别:
Standard Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 140万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
大規模Real World Dataを用いた非悪性黒色腫皮膚悪性腫瘍の多角的疫学解析
使用大规模真实世界数据对非恶性黑色素瘤皮肤恶性肿瘤进行多方面流行病学分析
- 批准号:
24K19181 - 财政年份:2024
- 资助金额:
$ 140万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Zeroshot learning of real-world AI by fusing large deep learning models and 3D virtual world
通过融合大型深度学习模型和 3D 虚拟世界,实现现实世界人工智能的零射击学习
- 批准号:
23H03426 - 财政年份:2023
- 资助金额:
$ 140万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BoCP-Implementation: Eco-evolutionary dynamics of rewilding: Real-time genetic monitoring of large-mammal community reassembly
BoCP-实施:野化的生态进化动力学:大型哺乳动物群落重组的实时基因监测
- 批准号:
2225088 - 财政年份:2023
- 资助金额:
$ 140万 - 项目类别:
Continuing Grant