Convergence Accelerator Phase I(RAISE): Empowering Neurodiverse Populations for Employment through Inclusion AI and Innovation Science
融合加速器第一阶段(RAISE):通过包容性人工智能和创新科学为神经多样化人群提供就业机会
基本信息
- 批准号:1936970
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/potential benefit of this Convergence Accelerator Phase I project is to dramatically increase the engagement of individuals with autism spectrum disorders (ASD) in the workforce. While approximately two-thirds of 2.5 million adults with ASD in the US have average intelligence, more than 50% of them remain unemployed or underemployed. Many individuals with ASD have unique capabilities that are in high demand across many job sectors; optimizing workforce engagement for these individuals holds the potential to transform great societal cost into great societal value. This project utilizes convergent expertise in Artificial Intelligence (AI), virtual reality, robotics, together with expertise in neuroscience, and behavioral and organizational psychology, to develop intelligent tools and systems to facilitate employment of individuals with ASD that have high potential for rapid commercialization and deployment. Specifically, the proposed research will develop intelligent training systems for interviews and other job relevant social interaction skills for individuals with ASD, and skill assessment tools for employers to enhance recruitment and retention. The entire project is based on the foundational idea that many people with ASD have the potential to participate in the workforce in ways that contribute to society while also sustaining personal success and well-being. This Convergence Accelerator Phase I project presents a comprehensive research plan to create new AI tools, systems, and predictive models, inclusive of employer and stakeholder input, to connect people with ASD to employers via embedded, technologically based, research-informed supports for individuals and organizations alike. For people with ASD, inherent challenges related to social initiation, engagement, and communication impede their adaptive independence, including finding and keeping jobs. This issue has become a top priority of the National Institutes of Health Interagency Autism Coordinating Committee. The project involves six convergent, mutually reinforcing research components: (1) a pipeline to employment for people with ASD; (2) an affect-sensitive, closed-loop virtual reality interview training platform to assess and intervene on skill deficits while also gathering aggregate data relevant to employer training; (3) opportunities for home assessment and practice outside of traditional educational settings through the use of AI-agent mediated collaborative virtual environments and (4) closed-loop interactive socially assistive robots; (5) novel computer vision and wearable computing tools for assessment of real-world generalization of skills learned within VR and robotic systems; and (6) customizable, innovative assessment tools using data-driven visual AI to identify strengths, talents, and job-relevant skills.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持基于团队的多学科努力,这些努力应对国家重要性的挑战,并在不久的将来显示出可交付成果的潜力。 该融合加速器I期项目的更广泛的影响/潜在优势是显着增加自闭症谱系障碍(ASD)在劳动力中的个人的参与。尽管在美国有250万名ASD的成年人中,大约三分之二的人具有平均的情报,但其中超过50%的人仍然失业或就业不足。许多ASD具有独特能力的人在许多工作领域的需求都很高。优化这些人的劳动力参与具有将巨大的社会成本转变为巨大的社会价值的潜力。该项目利用人工智能(AI),虚拟现实,机器人技术以及在神经科学以及行为和组织心理学方面的专业知识来开发智能工具和系统,以促进具有快速商业化和部署潜力的ASD的个人。 具体而言,拟议的研究将开发智能培训系统,用于访谈和其他工作相关的社会互动技能,并为使用ASD的人以及雇主的技能评估工具,以增强招聘和保留。整个项目基于这样的基本思想,即许多ASD的人都有潜力以促进社会的方式参与劳动力,同时还可以维持个人的成功和福祉。该融合加速器I期项目提出了一项全面的研究计划,以创建新的AI工具,系统和预测模型(包括雇主和利益相关者的意见),通过嵌入式,基于技术的,基于技术的,研究信息的支持将ASD的人与雇主与雇主联系起来。对于有ASD的人来说,与社会启动,参与和沟通有关的固有挑战阻碍了他们的适应性独立性,包括寻找和保持工作。这个问题已成为美国国立卫生研究院间自闭症协调委员会的重中之重。该项目涉及六个收敛的,相互加强的研究组成部分:(1)ASD患者就业的管道; (2)情感敏感的,闭环的虚拟现实访谈培训平台,以评估和干预技能不足,同时还收集与雇主培训相关的汇总数据; (3)通过使用AI-Agent Sedied协作虚拟环境和(4)闭环互动社会辅助机器人,在传统教育环境之外进行家庭评估和实践的机会; (5)新型的计算机视觉和可穿戴计算工具,用于评估VR和机器人系统中学到的技能的现实概括; (6)使用数据驱动的视觉AI进行定制的创新评估工具来确定优势,才能和与工作相关的技能。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子评估来支持的,并具有更广泛的影响。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and Validation of a Stress Detection Model for Use with a VR Based Interview Simulator for Autistic Young Adults
与基于 VR 的自闭症年轻人访谈模拟器一起使用的压力检测模型的设计和验证
- DOI:10.1007/978-3-030-78092-0_40
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Migovich, M;Korman, A;Wade, J;Sarkar, N.
- 通讯作者:Sarkar, N.
2D and 3D Visualization of Eye Gaze Patterns in a VR-Based Job Interview Simulator: Application in Educating Employers on the Gaze Patterns of Autistic Candidates
基于 VR 的工作面试模拟器中眼睛注视模式的 2D 和 3D 可视化:在对自闭症候选人的注视模式进行雇主教育中的应用
- DOI:10.1007/978-3-030-78092-0_36
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Breen, M;McClarty, J;Langley, C;Farzidayeri, J;Trevethan, K;Swenson, B;Sarkar, M;Wade, J;Sarkar, N.
- 通讯作者:Sarkar, N.
A Social Robot for Improving Interruptions Tolerance and Employability in Adults with ASD
- DOI:10.1109/hri53351.2022.9889383
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Rebecca Ramnauth;Emmanuel Adéníran;Timothy Adamson;Michael A. Lewkowicz;Rohit Giridharan;Caroline Reiner;B. Scassellati
- 通讯作者:Rebecca Ramnauth;Emmanuel Adéníran;Timothy Adamson;Michael A. Lewkowicz;Rohit Giridharan;Caroline Reiner;B. Scassellati
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilanjan Sarkar其他文献
Stress Detection of Autistic Adults during Simulated Job Interviews using a Novel Physiological Dataset and Machine Learning
使用新颖的生理数据集和机器学习在模拟工作面试期间检测自闭症成人的压力
- DOI:
10.1145/3639709 - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Miroslava Migovich;Deeksha Adiani;Michael Breen;A. Swanson;Timothy J. Vogus;Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
An Iterative Participatory Design Approach to Develop Collaborative Augmented Reality Activities for Older Adults in Long-Term Care Facilities
一种迭代参与式设计方法,为长期护理机构中的老年人开发协作增强现实活动
- DOI:
10.1145/3613904.3642595 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Ullal;Mahrukh Tauseef;Alexandra Watkins;Lisa A. Juckett;Cathy A. Maxwell;Judith Tate;Lorraine C. Mion;Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
Analysis of order of redundancy relation for robust actuator fault detection
- DOI:
10.1016/j.conengprac.2009.02.014 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Bibhrajit Halder;Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
Control of Mechanical Systems with Rolling Constraints : Application to Dynamic Control of Mobile Robots MS-CIS-92-44 GRASP LAB 320
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
Poster 8 Sensor-enabled Radio Frequency Identification Tags for Remotely Monitoring Everyday Arm Activity: Sensitivity and Specificity
- DOI:
10.1016/j.apmr.2011.07.030 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:
- 作者:
Joydip Barman;Gitendra Uswatte;Touraj Ghaffari;Nilanjan Sarkar;Brad Sokal;Ezekiel Byrom;Eva Trinh;Christopher Varghese;Michael Brewer;Alan Shih - 通讯作者:
Alan Shih
Nilanjan Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilanjan Sarkar', 18)}}的其他基金
I-Corps: Integrating Complex Augmented Reality Systems in Nursing Education
I-Corps:将复杂的增强现实系统集成到护理教育中
- 批准号:
2349446 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Community Informed AI-Based Vehicle Technology Simulator with Behavioral Strategies to Advance Neurodiverse Independence and Employment
SCC-CIVIC-FA 轨道 B:社区知情的基于人工智能的车辆技术模拟器,具有促进神经多样性独立和就业的行为策略
- 批准号:
2322029 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Community Informed AI-Based System for Driver Training to Advance Neurodiverse Independence and Employment
SCC-CIVIC-PG 轨道 B:社区知情的基于人工智能的驾驶员培训系统,以促进神经多样化的独立和就业
- 批准号:
2228370 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SCC-IRG Track 1 Reducing Loneliness for Long Term Care Older Adults through Collaborative Augmented Reality
SCC-IRG 第 1 轨道通过协作增强现实减少长期护理老年人的孤独感
- 批准号:
2225890 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SCH: Enhanced detection of impending problem behavior in people with intellectual and developmental disabilities through multimodal sensing and machine learning
SCH:通过多模态传感和机器学习增强对智力和发育障碍人士即将出现的问题行为的检测
- 批准号:
2124002 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Individualized Adaptive Robot-Mediated Intervention Architecture for Autism
个体化自适应机器人介导的自闭症干预架构
- 批准号:
1264462 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Student Travel Support for 2012 IEEE International Conference on Robotics and Automation
2012 年 IEEE 国际机器人与自动化会议学生旅行支持
- 批准号:
1216519 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
A Novel Adaptive Transactional Virtual Reality-based Assistive Technology for Autism Intervention
一种用于自闭症干预的新型自适应交易虚拟现实辅助技术
- 批准号:
0967170 - 财政年份:2010
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
SGER: An Affect-Sensitive, Anticipatory Control Framework for Human-Robot Cooperation
SGER:用于人机合作的情感敏感、预期控制框架
- 批准号:
0107775 - 财政年份:2001
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
激光增材制造粒子加速器真空系统复杂部件材料真空性能优化研究
- 批准号:12375321
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
用于毫安级强流回旋加速器轴向注入器的插入式RFQ关键技术研究
- 批准号:12375151
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
高功率超导直线加速器束流强度调节及束晕抑制技术研究
- 批准号:12305169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
- 批准号:62374108
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电子直线加速器中微束团不稳定性的抑制方法研究
- 批准号:12305157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
- 批准号:
2344877 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
- 批准号:
2345069 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
- 批准号:
2345176 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
- 批准号:
2345052 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
- 批准号:
2345039 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement