Collaborative Research: Mathematical Sciences Institutes Diversity Initiative

合作研究:数学科学研究所多样性倡议

基本信息

  • 批准号:
    1936635
  • 负责人:
  • 金额:
    $ 7.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Cultivating diversity and broadening participation of historically underrepresented groups in the mathematical sciences are national goals that are essential components of the innovation engine that drives the nation?s economy. It is a complex problem to solve, and doing so requires a concerted effort. The Mathematical Sciences Institutes Diversity Initiative (MSIDI) is an ongoing collaboration among the NSF-funded mathematical sciences research institutes that aims to address this issue with a series of events targeting members of historically underrepresented groups in the mathematical sciences, including women of all ethnicities. There is no ?one size fits all? approach to increasing participation from underrepresented groups. In this specific project, MSIDI partners with a team of mathematicians from underrepresented groups to enhance several conferences and workshops that aim to address this underrepresentation. These special conferences and workshops are complementary to the core activities of the mathematical sciences research institutes and are important for the goal of increasing participation in key activities that are integral to a career in the mathematical sciences, as well as to core programs at the associated research institutes. Under this project, MSIDI will organize the following events. The Modern Mathematics Workshop will be a pre-conference event at SACNAS in Fall 2020 and planning will be led by the Institute for Computational and Experimental Research in Mathematics (ICERM). The Blackwell-Tapia Conference will be in Durham, NC in Fall 2020 and planning will be led by the Statistical and Applied Mathematical Sciences Institute (SAMSI). The Latinx in the Mathematical Sciences Conference will be in Los Angeles, CA in Spring 2021 and planning will be led by the Institute for Pure and Applied Mathematics (IPAM). There will be another Modern Mathematics Workshop at SACNAS in Fall 2021and planning will be led by the Mathematical Sciences Research Institute (MSRI). And Spring Opportunities will be in Princeton, NJ in Spring 2022 and planning will be led by the Institute for Advanced Study (IAS). Details about these events can be found at https://mathinstitutes.org/diversity/Modern Mathematics Workshops focus on contemporary research in mathematics and take place in conjunction with the national meeting of the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS). These workshops are for mathematicians at all levels and include some special programming for undergraduates, graduate students, and postdoctoral researchers. The Blackwell-Tapia Conference includes a mix of activities designed to inform the next generation of mathematicians about career opportunities in the mathematical sciences and provide a chance for them to network with mathematical scientists who play a leadership role in their communities. During this conference the prestigious Blackwell-Tapia Prize is awarded. This prize recognizes a mathematician who has contributed significantly to research and to addressing the problem of underrepresentation of minorities in the mathematical sciences. The Latinx in the Mathematical Sciences Conference showcases the research contributions and achievements of Latinx mathematicians and includes activities for high school students, undergraduates, graduate students, postdoctoral researchers, and faculty. The Spring Opportunities Workshop allows attendees to explore what it takes to thrive in a variety of mathematical careers. Collectively, the goals of these MSIDI activities are to recognize and showcase the research of mathematicians from underrepresented minority groups; disseminate successful efforts to address underrepresentation; inform students and early career mathematicians about career opportunities in the mathematical sciences; build a community around shared interests related to the problem of underrepresentation; and provide networking and development opportunities for current and future mathematicians at all points in the career trajectory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
培养多样性和扩大数学科学领域历史上代表性不足的群体的参与是国家目标,也是驱动国家经济的创新引擎的重要组成部分。这是一个需要解决的复杂问题,需要共同努力。 数学科学研究所多样性倡议 (MSIDI) 是 NSF 资助的数学科学研究机构之间正在进行的一项合作,旨在通过一系列针对数学科学领域历来代表性不足的群体成员(包括各族裔女性)的活动来解决这一问题。没有“一刀切”的方法吗?增加代表性不足群体的参与的方法。 在这个具体项目中,MSIDI 与来自代表性不足群体的数学家团队合作,加强了旨在解决代表性不足问题的多个会议和研讨会。 这些特别会议和研讨会是对数学科学研究机构核心活动的补充,对于增加对数学科学职业以及相关研究核心项目不可或缺的关键活动的参与这一目标非常重要机构。 根据该项目,MSIDI 将组织以下活动。 现代数学研讨会将于 2020 年秋季在 SACNAS 举行会前活动,规划将由数学计算与实验研究所 (ICERM) 领导。 Blackwell-Tapia 会议将于 2020 年秋季在北卡罗来纳州达勒姆举行,规划将由统计与应用数学科学研究所 (SAMSI) 领导。 拉丁数学科学会议将于 2021 年春季在加利福尼亚州洛杉矶举行,规划将由纯粹与应用数学研究所 (IPAM) 领导。 SACNAS 将于 2021 年秋季举办另一场现代数学研讨会,规划将由数学科学研究所 (MSRI) 牵头。 春季机会活动将于 2022 年春季在新泽西州普林斯顿举行,规划将由高级研究所 (IAS) 牵头。 有关这些活动的详细信息,请访问 https://mathinstitutes.org/diversity/Modern Mathematics Workshops 重点关注当代数学研究,并与奇卡诺人和美洲原住民科学促进会全国会议同时举行(萨克纳斯)。 这些研讨会面向各级数学家,包括一些针对本科生、研究生和博士后研究人员的特殊项目。布莱克韦尔-塔皮亚会议包括一系列活动,旨在向下一代数学家介绍数学科学的职业机会,并为他们提供与在其社区中发挥领导作用的数学科学家建立联系的机会。在这次会议期间,颁发了著名的布莱克韦尔-塔皮亚奖。 该奖项旨在表彰一位为研究和解决数学科学中少数群体代表性不足问题做出重大贡献的数学家。 拉丁裔数学科学会议展示了拉丁裔数学家的研究贡献和成就,并包括针对高中生、本科生、研究生、博士后研究人员和教师的活动。 春季机会研讨会让与会者探索如何在各种数学职业中蓬勃发展。 总的来说,这些 MSIDI 活动的目标是认可和展示来自代表性不足的少数群体的数学家的研究;传播解决代表性不足问题的成功努力;向学生和早期职业数学家介绍数学科学的职业机会;围绕与代表性不足问题相关的共同利益建立社区;并为当前和未来的数学家在职业轨迹的各个阶段提供交流和发展机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulrica Wilson其他文献

Ulrica Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulrica Wilson', 18)}}的其他基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
  • 批准号:
    2015375
  • 财政年份:
    2020
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Standard Grant
National Association of Mathematicians Network of Opportunities Targeting Students and Faculty at HBCUs
全国数学家协会针对 HBCU 学生和教师的机会网络
  • 批准号:
    1833234
  • 财政年份:
    2018
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Standard Grant
Collaborative: AIM & ICERM Research Experiences for Undergraduate Faculty Workshops
合作:AIM
  • 批准号:
    1620080
  • 财政年份:
    2016
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Continuing Grant
Collaborative: EDGE Program
协作:EDGE 计划
  • 批准号:
    1346581
  • 财政年份:
    2014
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Continuing Grant
Research Initiation Award Grant: Investigating the combinatorial structure of special classes of matrices and graphs
研究启动奖:研究特殊类别矩阵和图形的组合结构
  • 批准号:
    1237938
  • 财政年份:
    2012
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Standard Grant
EDGE Program
边缘计划
  • 批准号:
    1136296
  • 财政年份:
    2011
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Standard Grant

相似国自然基金

肠道微生物动态演变数学模型构建及壳寡糖转运代谢过程研究
  • 批准号:
    32302102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
  • 批准号:
    12371227
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
大气海洋本原方程的数学理论研究
  • 批准号:
    12371238
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
多模态数学问题理解和类人解答方法研究
  • 批准号:
    62376012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于隐含知识挖掘与高效表示学习的初等数学自动解答研究
  • 批准号:
    62377021
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了