QII-TAQS: A Chip-Scale Spin-Photon Memory Interface with Coherence Exceeding One Second
QII-TAQS:相干性超过一秒的芯片级自旋光子存储器接口
基本信息
- 批准号:1936375
- 负责人:
- 金额:$ 164.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum information processing provides a secure unbreakable network protected by the physical laws of quantum mechanics. Quantum key distribution, for example, provides fundamentally secure photon communication channels through the no-cloning theorem and the one-time key pad between the sender and receiver, wherein the eavesdropper in the communication channel can be immediately detected. The general figures-of-merit in an optical quantum network are the secure key rate (in single-photon qubits per second) and the channel physical distance (up to ~ 100 km as the record). Various protocols in quantum key distribution, such as through high-dimensional entanglement and chip-scale photonic integration, have further increased the secure key rate. Improving the qubit physical transmission distance, however, requires the development of a scalable, long-coherence, and high-fidelity quantum memory for the quantum network. Furthermore, a quantum memory module, in a two-node configuration, can provide the long-awaited scientific milestone of a quantum repeater -- scaling the quantum network distance to metropolitan and even continental scales. This QII-TAQS project aims to develop a chip-scale silicon qubit memory based on the nuclear spin-photon interactions of deep-donor selenium-77 in an ultrapure silicon-28 background. The project is enabled by recent discovery of a hyperfine nuclear transition of 77Se+ that is remarkably optically accessible (previously thought to be forbidden from effective mass theory). Long coherence time of the nuclear spin qubit up to a second has recently been reported. With the hyperfine spin structure addressable by microwave modulation, on-demand photon storage and dynamical improvement of the storage can even be possible. This scientific effort brings a quantum network towards realization, supported in a silicon-based architecture for quantum information processing. Complementing the scientific tasks, the project has a broader educational effort that includes diversity outreach, high-school science outreach, and hands-on graduate and undergraduate pedagogical modules. The project involves collaborative work with NIST and Argonne National Laboratory, providing a fertile training ground for the cross-disciplinary training of PhD students.This project aims to advance the deep-donor 77Se+ in an ultrapure enriched silicon-28 bath, with optical-microwave simultaneous control and dephasing times T2 up to a second, in a chip-scalable quantum memory interface. Firstly, the research team seeks to implement the 28Si:77Se+ system in a photonic crystal microcavity, significantly improving the radiative efficiency and photon extraction in the nuclear spin- photon interaction. The team will examine the cavity Purcell enhancement of radiative lifetimes, as well as seek to understand the non-radiative mechanisms along with the zero-photon line bounds. Secondly, they will examine the coherence lifetimes of the 28Si:77Se+ qubit through spectroscopic methods. This involves spin-relaxation (T1) protocols, the inhomogeneous coherence times (T2 and T2*), as well as qubit instantaneous diffusion. Thirdly, they propose to implement the 28Si:77Se+ hyperfine spin-photon interface as a quantum memory on the quantum node architecture. This scalable quantum memory module enables a transformative platform in optically-accessible long nuclear spin coherence, through a silicon quantum information processing architecture. This project is jointly funded by the Quantum Leap Big Idea Program and the Division of Electrical, Communication, and Cyber Systems in the Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息处理提供了一个受量子力学物理定律保护的安全牢不可破的网络。例如,量子密钥分布通过无键定理以及发件人和接收器之间的一次性键垫提供了从根本上安全的光子通信通道,其中可以立即检测到通信通道中的窃听器。光量子网络中的一般数字是安全键率(以每秒单光量量子的速度为单位)和通道物理距离(作为记录为〜100 km)。量子密钥分布中的各种方案,例如通过高维纠缠和芯片尺度光子整合,已进一步提高了安全密钥速度。但是,改善量子的物理传输距离需要为量子网络开发可扩展,长度和高保真量子记忆。此外,量子记忆模块以两节点的配置可以提供量子中继器的期待已久的科学里程碑 - 将量子网络距离扩展到大都会甚至大陆尺度。这个QII-TAQS项目旨在基于在超纯硅-28背景下深donor-selenium-77的核自旋旋子相互作用开发芯片尺度的硅值记忆。该项目是通过最近发现的77SE+的超精细核转变来实现的,该转变非常容易访问(以前被认为是从有效的质量理论中禁止的)。最近有报道称,核自旋量子标准的长时间相干时间已被报道。通过微波调制可解决的超精细自旋结构,点播光子存储和存储的动态改进甚至是可能的。这项科学的努力为实现量子网络带来了量子网络,并在基于硅的基于量子信息处理中支持。该项目在补充科学任务的情况下进行了更广泛的教育工作,其中包括多样性外展,高中科学外展以及动手毕业生和本科教学模块。 The project involves collaborative work with NIST and Argonne National Laboratory, providing a fertile training ground for the cross-disciplinary training of PhD students.This project aims to advance the deep-donor 77Se+ in an ultrapure enriched silicon-28 bath, with optical-microwave simultaneous control and dephasing times T2 up to a second, in a chip-scalable quantum memory interface.首先,研究小组试图在光子晶体微腔中实施28SI:77SE+系统,从而显着提高了核自旋光子相互作用中的辐射效率和光子提取。该小组将检查辐射寿命的腔室增强,并试图了解非辐射机制以及零量线线的边界。其次,他们将通过光谱法检查28SI:77SE+ QUBIT的相干寿命。这涉及自旋 - - - 链接方案,不均匀的相干时间(T2和T2*)以及量子瞬时扩散。第三,他们建议在量子节点体系结构上实现28SI:77SE+超精细旋转光子接口作为量子存储器。该可扩展的量子存储器模块通过硅量子信息处理体系结构实现了在光学上可访问的长核自旋连贯性中的变换平台。该项目由Quantum Leap Big Idea计划以及工程局中的电气,通信和网络系统的部门共同资助。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估的评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Chee Wei Wong其他文献
Block-MDS QC-LDPC Codes for Information Reconciliation in Key Distribution
用于密钥分配中信息协调的块 MDS QC-LDPC 码
- DOI:10.48550/arxiv.2403.0019210.48550/arxiv.2403.00192
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Lev Tauz;Debarnab Mitra;Jayanth Shreekumar;M. Sarihan;Chee Wei Wong;Lara DolecekLev Tauz;Debarnab Mitra;Jayanth Shreekumar;M. Sarihan;Chee Wei Wong;Lara Dolecek
- 通讯作者:Lara DolecekLara Dolecek
Dispersion-managed Hong-Ou-Mandel revival via a biphoton frequency comb
通过双光子频率梳进行色散管理的红欧曼德尔复兴
- DOI:10.1364/cleo_fs.2023.ftu3a.410.1364/cleo_fs.2023.ftu3a.4
- 发表时间:20232023
- 期刊:
- 影响因子:0
- 作者:Xiang Cheng;Kaishuo Chang;M. Sarihan;Chee Wei WongXiang Cheng;Kaishuo Chang;M. Sarihan;Chee Wei Wong
- 通讯作者:Chee Wei WongChee Wei Wong
Ultrashort chirped pulse evolution in silicon photonic nanowires
硅光子纳米线中的超短啁啾脉冲演化
- DOI:10.3788/col201412.s1190510.3788/col201412.s11905
- 发表时间:2014-072014-07
- 期刊:
- 影响因子:3.5
- 作者:Wenchao Sun;Ju Liu;Yizhou Tan;Jiankun Yang;Xiaochun Wang;Yu;a Zhang;Wusheng Tang;Xiujian Li;Chee Wei WongWenchao Sun;Ju Liu;Yizhou Tan;Jiankun Yang;Xiaochun Wang;Yu;a Zhang;Wusheng Tang;Xiujian Li;Chee Wei Wong
- 通讯作者:Chee Wei WongChee Wei Wong
Amorphous photonic structures with observed band gaps in the near infrared
在近红外区域观察到带隙的非晶光子结构
- DOI:
- 发表时间:20132013
- 期刊:
- 影响因子:0
- 作者:S. Kocaman;J. McMillan;PIN;Mikael C. Rechtsman;Chee Wei WongS. Kocaman;J. McMillan;PIN;Mikael C. Rechtsman;Chee Wei Wong
- 通讯作者:Chee Wei WongChee Wei Wong
Error-free data transmission through fast broadband all-optical modulation in graphene–silicon optoelectronics
通过石墨烯硅光电器件中的快速宽带全光调制实现无差错数据传输
- DOI:10.1063/5.000659610.1063/5.0006596
- 发表时间:20202020
- 期刊:
- 影响因子:4
- 作者:Hao Zhou;Xiaoliang Zhu;Tingyi Gu;Jiagui Wu;Guoliang Deng;Shu-Wei Huang;Noam Ophir;Mingbin Yu;Dim-Lee Kwong;Shouhuan Zhou;Keren Bergman;Chee Wei WongHao Zhou;Xiaoliang Zhu;Tingyi Gu;Jiagui Wu;Guoliang Deng;Shu-Wei Huang;Noam Ophir;Mingbin Yu;Dim-Lee Kwong;Shouhuan Zhou;Keren Bergman;Chee Wei Wong
- 通讯作者:Chee Wei WongChee Wei Wong
共 7 条
- 1
- 2
Chee Wei Wong的其他基金
SWIFT: Coexisting spectrally-dense communications and passive sensing in directed multi-hop sub-millimeter-wave networks
SWIFT:在定向多跳亚毫米波网络中共存频谱密集通信和无源传感
- 批准号:22295602229560
- 财政年份:2022
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
NRT-QISE: Accelerating Interdisciplinary Frontiers in Quantum Sciences and Technologies (AIF-Q)
NRT-QISE:加速量子科学与技术的跨学科前沿(AIF-Q)
- 批准号:21259242125924
- 财政年份:2021
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
QuIC-TAQS: A high-dimensional multi-access scalable testbed for the interconnected quantum network
QuIC-TAQS:互连量子网络的高维多访问可扩展测试床
- 批准号:21379842137984
- 财政年份:2021
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Continuing GrantContinuing Grant
PFI-TT: A chip-scale laser sensing module for precision navigation and metrology
PFI-TT:用于精密导航和计量的芯片级激光传感模块
- 批准号:20165612016561
- 财政年份:2020
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
SBIR Phase I: Metasurface optical elements for augmented/mixed-reality smart glasses
SBIR 第一阶段:用于增强/混合现实智能眼镜的超表面光学元件
- 批准号:20151512015151
- 财政年份:2020
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
I-Corps: Chip-scale laser ranging module for precision autonomous navigation and vehicular safety
I-Corps:用于精确自主导航和车辆安全的芯片级激光测距模块
- 批准号:20298112029811
- 财政年份:2020
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Programmable chip-scale quantum photonics platform based on frequency-comb cluster-states for multicasting quantum networks
合作研究:基于频梳簇态的可编程芯片级量子光子平台,用于多播量子网络
- 批准号:19193551919355
- 财政年份:2019
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
SpecEES: A spectrally-dense 650-GHz photonic wireless backhaul via secure network coding
SpecEES:通过安全网络编码的光谱密集 650 GHz 光子无线回程
- 批准号:18245681824568
- 财政年份:2018
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
A terahertz spectrometer on a chip, at the thermodynamical limits
芯片上的太赫兹光谱仪,处于热力学极限
- 批准号:18105061810506
- 财政年份:2018
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
EFRI ACQUIRE: A chip-scale high-dimensional entanglement and quantum memory module for secure communications
EFRI ACQUIRE:用于安全通信的芯片级高维纠缠和量子存储模块
- 批准号:17417071741707
- 财政年份:2017
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
塔里木北缘库鲁克塔格地区志留—泥盆纪变质—变形作用及其构造意义
- 批准号:42372240
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
热液流体对白云岩孔隙的差异改造:以塔北南斜坡上震旦统奇格布拉克组为例
- 批准号:42272154
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
库鲁克塔格地区下寒武统西大山组黑色页岩的钼同位素特征及其对古海洋环境的指示意义
- 批准号:41903018
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
新疆库鲁克塔格地区古元古代深熔混合岩变质作用P-T-t轨迹及其对碰撞造山过程的约束
- 批准号:41762015
- 批准年份:2017
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
北阿尔金地区阿克塔什塔格杂岩的岩石组合、形成时代及相关构造-岩浆事件
- 批准号:41672186
- 批准年份:2016
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:23266282326628
- 财政年份:2023
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Continuing GrantContinuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:23267462326746
- 财政年份:2023
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:23268012326801
- 财政年份:2023
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Continuing GrantContinuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:23268402326840
- 财政年份:2023
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Standard GrantStandard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:23267582326758
- 财政年份:2023
- 资助金额:$ 164.68万$ 164.68万
- 项目类别:Continuing GrantContinuing Grant