SpecEES: A spectrally-dense 650-GHz photonic wireless backhaul via secure network coding

SpecEES:通过安全网络编码的光谱密集 650 GHz 光子无线回程

基本信息

  • 批准号:
    1824568
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Wireless communications and networks have experienced exponential growth in data rates and traffic over the past decade, driven by the ever-increasing density of mobile devices, multimedia services and data requirements. The resulting electromagnetic spectrum below 60-GHz has become extremely overcrowded, even with advanced spectrum-efficient modulation formats and spatially diverse multiple-input multiple-output (MIMO) techniques. At present, the sub-millimeter-wave (sub-mm-Wave) electromagnetic spectrum between 300 GHz and 850 GHz is largely unassigned and provides a unique opportunity for more efficient utilization. This will avoid further crowding the currently heavily used spectrum and significantly enhance data rates to tens of Gb/s. This project seeks to demonstrate such a fundamentally new platform towards spectral-efficient and energy-efficient wireless communications with embedded security. Due to the inherent atmospheric attenuation, the sub-mm-Wave communication distance has been limited to within 50 m. Thus, this project proposes network configurations of sub-mm-Wave point-to-point links to enable secured spatial coverage over longer distances and larger areas. There are two distinct differences of the sub-mm-Wave links compared to traditional wireless networks: the directivity of the sub-mm-Wave links and the possibility for a transmitter to connect to multiple receivers through adaptive electronic beam-steering and beam-forming. The beam-forming with narrow beam-width removes broadcasting and avoids interference, enabling much simpler network operation to approach the theoretical upper limits of network information capacity. The project seeks to demonstrate the modular sub-mm-Wave link hardware to achieve the above goal. The proposed research will be complemented with an integrated education and outreach program. This includes diversity recruitment, mentoring and retention, hands-on curriculum development, minority high-school and undergraduate training, and public outreach. The cross-layer scientific and education provides a new platform at the interface of hardware, software, and networks in next-generation wireless communication networks.This project will develop a spectrally dense, high-data-rate, 650-GHz photonic wireless communications platform in a diamond mesh network, while explicitly addressing network security and energy efficiency in the architecture. The collaborative research spans across the physical layer, the network layer, and the software layer, addressing cross-layer issues in the fundamental architecture. The proposed research consists of three thrust areas. In Thrust I, the project will examine a modular photonic sub-mm-Wave link, based on a chip-scale photomixer driven by an optical frequency comb recently developed by the team. This enables high-power spectrally dense, 80 Gb/s sub-mm-Wave transmission. In Thrust II, the project will examine a photonic sub-mm-Wave 80 Gb/s testbed, implemented with an adaptive smart antenna array. Beam-steering and beam-forming will enable simultaneously a directional line-of-sight (LoS) link and a non-line-of-sight (NLoS) link, with the former establishing a spectrally efficient channel with less inter-symbol and inter-channel interference. The latter mitigates medium non-idealities such as interference, shadowing, and multi-path effects. In Thrust III, the project will study the capacity of sub-mm-Wave communication networks and explore the design of near-optimal efficient and secure algorithms. Enabled by the intrinsic directivity and beam-forming capabilities of our sub-mm-Wave link, the project will advance the possibility of unconditional security in the wireless backhaul network through physical layer security algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去十年中,由于移动设备、多媒体服务和数据需求的密度不断增加,无线通信和网络的数据速率和流量经历了指数级增长。即使采用先进的频谱高效调制格式和空间多样化的多输入多输出 (MIMO) 技术,60 GHz 以下的电磁频谱也变得极其拥挤。目前,300 GHz 至 850 GHz 之间的亚毫米波(sub-mm-Wave)电磁频谱大部分未分配,为更有效地利用提供了独特的机会。这将避免进一步拥挤当前大量使用的频谱,并将数据速率显着提高到数十 Gb/s。该项目旨在展示这样一个全新的平台,旨在实现具有嵌入式安全性的频谱高效和节能无线通信。由于固有的大气衰减,亚毫米波通信距离一直被限制在50 m以内。因此,该项目提出了亚毫米波点对点链路的网络配置,以实现更长距离和更大区域的安全空间覆盖。与传统无线网络相比,亚毫米波链路有两个明显的区别:亚毫米波链路的方向性以及发射器通过自适应电子波束转向和波束形成连接到多个接收器的可能性。窄波束宽度的波束形成消除了广播并避免了干扰,使网络操作更加简单,接近网络信息容量的理论上限。该项目旨在演示模块化亚毫米波链路硬件以实现上述目标。拟议的研究将得到综合教育和推广计划的补充。这包括多元化招聘、指导和保留、实践课程开发、少数族裔高中和本科生培训以及公共宣传。跨层科教在下一代无线通信网络的硬件、软件和网络接口上提供了一个新的平台。该项目将开发一个频谱密集、高数据速率、650GHz光子无线通信平台在菱形网状网络中,同时明确解决架构中的网络安全和能源效率问题。合作研究跨越物理层、网络层和软件层,解决基础架构中的跨层问题。拟议的研究包括三个重点领域。在 Thrust I 中,该项目将研究模块化光子亚毫米波链路,该链路基于由该团队最近开发的光学频率梳驱动的芯片级光电混频器。这可实现高功率频谱密集、80 Gb/s 亚毫米波传输。在 Thrust II 中,该项目将检查采用自适应智能天线阵列实现的光子亚毫米波 80 Gb/s 测试台。波束控制和波束成形将同时实现定向视距 (LoS) 链路和非视距 (NLoS) 链路,前者建立一个频谱高效的通道,符号间和符号间干扰更少。 - 信道干扰。后者减轻了介质非理想因素,例如干扰、阴影和多径效应。在 Thrust III 中,该项目将研究亚毫米波通信网络的容量,并探索近乎最优的高效安全算法的设计。借助我们的亚毫米波链路的固有方向性和波束形成功能,该项目将通过物理层安全算法提高无线回程网络中无条件安全的可能性。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polynomial-time Capacity Calculation and Scheduling for Half-Duplex 1-2-1 Networks
半双工 1-2-1 网络的多项式时间容量计算和调度
On the Multicast Capacity of Full-Duplex 1-2-1 Networks
全双工1-2-1网络的组播能力
High-power terahertz pulse generation from bias-free nanoantennas on graded composition InGaAs structures
  • DOI:
    10.1364/oe.447733
  • 发表时间:
    2022-01-17
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Lu, Ping Keng;Turan, Deniz;Jarrahi, Mona
  • 通讯作者:
    Jarrahi, Mona
Secure Communication over 1-2-1 Networks
通过 1-2-1 网络进行安全通信
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chee Wei Wong其他文献

Block-MDS QC-LDPC Codes for Information Reconciliation in Key Distribution
用于密钥分配中信息协调的块 MDS QC-LDPC 码
  • DOI:
    10.48550/arxiv.2403.00192
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lev Tauz;Debarnab Mitra;Jayanth Shreekumar;M. Sarihan;Chee Wei Wong;Lara Dolecek
  • 通讯作者:
    Lara Dolecek
Dispersion-managed Hong-Ou-Mandel revival via a biphoton frequency comb
通过双光子频率梳进行色散管理的红欧曼德尔复兴
Amorphous photonic structures with observed band gaps in the near infrared
在近红外区域观察到带隙的非晶光子结构
Ultrashort chirped pulse evolution in silicon photonic nanowires
硅光子纳米线中的超短啁啾脉冲演化
  • DOI:
    10.3788/col201412.s11905
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Wenchao Sun;Ju Liu;Yizhou Tan;Jiankun Yang;Xiaochun Wang;Yu;a Zhang;Wusheng Tang;Xiujian Li;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong
Error-free data transmission through fast broadband all-optical modulation in graphene–silicon optoelectronics
通过石墨烯硅光电器件中的快速宽带全光调制实现无差错数据传输
  • DOI:
    10.1063/5.0006596
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Hao Zhou;Xiaoliang Zhu;Tingyi Gu;Jiagui Wu;Guoliang Deng;Shu-Wei Huang;Noam Ophir;Mingbin Yu;Dim-Lee Kwong;Shouhuan Zhou;Keren Bergman;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong

Chee Wei Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chee Wei Wong', 18)}}的其他基金

SWIFT: Coexisting spectrally-dense communications and passive sensing in directed multi-hop sub-millimeter-wave networks
SWIFT:在定向多跳亚毫米波网络中共存频谱密集通信和无源传感
  • 批准号:
    2229560
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
NRT-QISE: Accelerating Interdisciplinary Frontiers in Quantum Sciences and Technologies (AIF-Q)
NRT-QISE:加速量子科学与技术的跨学科前沿(AIF-Q)
  • 批准号:
    2125924
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
QuIC-TAQS: A high-dimensional multi-access scalable testbed for the interconnected quantum network
QuIC-TAQS:互连量子网络的高维多访问可扩展测试床
  • 批准号:
    2137984
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
PFI-TT: A chip-scale laser sensing module for precision navigation and metrology
PFI-TT:用于精密导航和计量的芯片级激光传感模块
  • 批准号:
    2016561
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Metasurface optical elements for augmented/mixed-reality smart glasses
SBIR 第一阶段:用于增强/混合现实智能眼镜的超表面光学元件
  • 批准号:
    2015151
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
I-Corps: Chip-scale laser ranging module for precision autonomous navigation and vehicular safety
I-Corps:用于精确自主导航和车辆安全的芯片级激光测距模块
  • 批准号:
    2029811
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Programmable chip-scale quantum photonics platform based on frequency-comb cluster-states for multicasting quantum networks
合作研究:基于频梳簇态的可编程芯片级量子光子平台,用于多播量子网络
  • 批准号:
    1919355
  • 财政年份:
    2019
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
QII-TAQS: A Chip-Scale Spin-Photon Memory Interface with Coherence Exceeding One Second
QII-TAQS:相干性超过一秒的芯片级自旋光子存储器接口
  • 批准号:
    1936375
  • 财政年份:
    2019
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
A terahertz spectrometer on a chip, at the thermodynamical limits
芯片上的太赫兹光谱仪,处于热力学极限
  • 批准号:
    1810506
  • 财政年份:
    2018
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
EFRI ACQUIRE: A chip-scale high-dimensional entanglement and quantum memory module for secure communications
EFRI ACQUIRE:用于安全通信的芯片级高维纠缠和量子存储模块
  • 批准号:
    1741707
  • 财政年份:
    2017
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant

相似国自然基金

全球光谱库支撑的典型黑土有机碳星地立体化反演研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机-地高光谱遥感的人工梭梭林水分胁迫诊断研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
近地小行星多色测光与光谱的观测研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    42 万元
  • 项目类别:
    联合基金项目
陆地生态系统生态与多尺度高光谱遥感
  • 批准号:
    31922090
  • 批准年份:
    2019
  • 资助金额:
    130 万元
  • 项目类别:
    优秀青年科学基金项目

相似海外基金

Heavy-metal-free colloidal quantum wells as efficient and spectrally narrow emitters for displays, biomarkers and single photon sources
不含重金属的胶体量子阱作为显示器、生物标记物和单光子源的高效窄光谱发射器
  • 批准号:
    2887761
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Studentship
Expanding multiparameter analyses of single cells and small particles with a 5-laser spectrally enabled flow cytometer
使用 5 激光光谱流式细胞仪扩展单细胞和小颗粒的多参数分析
  • 批准号:
    BB/X019977/1
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Research Grant
Collaborative Research: SpecEES: Designing A Spectrally Efficient and Energy Efficient Data Aided Demand Driven Elastic Architecture for future Networks (SpiderNET)
合作研究:SpecEES:为未来网络设计频谱效率高、能源效率高的数据辅助需求驱动弹性架构 (SpiderNET)
  • 批准号:
    2323300
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Novel application technology for retrofit application of spectrally selective coatings to overhead transmission and distribution lines
架空输配电线路光谱选择性涂层改造应用的新型应用技术
  • 批准号:
    10035560
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Collaborative R&D
Photonic frequency converter for spectrally agile seamless access network in millimeter-wave band
用于毫米波频段频谱敏捷无缝接入网络的光子频率转换器
  • 批准号:
    22K04116
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了