Collaborative Research: Net-Shape and Scalable Additive Manufacturing for Thermoelectric Waste Heat Recovery Materials and Devices using Selective Laser Melting
合作研究:使用选择性激光熔化进行热电废热回收材料和设备的净形状和可扩展增材制造
基本信息
- 批准号:1915933
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over 55 percent of the energy consumed in the US is released as waste heat. For the manufacturing sector alone, the total unrecovered waste heat is estimated to be 2,500 trillion BTU per year. The waste heat from American automobiles is equivalent to losing over $50 billion each year. Among various waste heat recovery technologies, solid-state thermoelectric generators (TEGs) are a promising strategy to increase energy efficiency, alleviate air pollution, and reduce carbon emissions. Traditional TEG manufacturing includes material synthesis, module assembly, and device integration, which has low productivity and high cost. A widespread deployment of TEGs in existing energy systems can be achieved only by resolving following key challenges in TEG manufacturing: cost-effective synthesis of abundant, low cost, reliable, and high ZT (figure of merit) thermoelectric materials; scalable manufacturing of TEG devices; function graded realization in the temperature gradient environment. This project has an additive manufacturing (AM) based net-shape nanomanufacturing process, that takes the advantages of the latest advances in materials science, heat transfer, and manufacturing, to tackle these challenges. To accomplish this ambitious goal, an interdisciplinary team of energy harvesting, material scientist, heat transfer and manufacturing is assembled at Virginia Tech, Carnegie Mellon, and UW, in collaboration with an industry leader of AM. Students from diverse background will be trained for the twenty-first century workforce. Great efforts will also be made for outreaches to K12 students. The objective of this project is to develop a novel integrated nanomanufacturing process for high-performance thermoelectric materials and functional devices using the selective laser melting (SLM) based AM method. Furthermore, a correlation between the laser processing variables and thermoelectric material characteristics will be established to provide fundamental understanding of laser-material interactions to achieve a net-shape and scalable AM method for thermoelectric devices. Specifically, the following hypotheses will be tested: (1) The non-equilibrium conditions produced during the laser-based AM process can introduce numerous nano-defects, nanoscale particles, and abundant multi-scale grain boundaries, which can reduce the thermal conductivity dramatically by phonon scatterings. (2) doped Si or other nano-particles will be used as additive materials in the nanomanufacturing process to improve the mechanical properties, enhance the electrical conductivity, and increase the Seebeck coefficient. (3) The laser-based AM can readily realize the graded doping and variable cross-section areas along the length of the thermoelectric elements with temperate variance to make the best use of the temperature-dependent material properties for achieving high performance thermoelectric devices. (4) Using the laser-based AM, the direct manufacturing of thermoelectric materials, thermal insulation layers, electrical conductor layers, and heat exchangers as a functional and integrated energy harvesting system, can result in higher mechanical stability and thermal reliability as compared to the traditional manufacturing approaches. Characterized as low-cost, high-efficiency, and industry-scalable nanomanufacturing of clean energy systems, this technology, if successfully tested and validated, will become extremely attractive for many industries associated with energy and manufacturing systems, such as automobiles, power stations, steel plants and many more. Understanding the fundamentals of electron and phonon transport for thermoelectric materials, developing next generation manufacturing tools, and designing novel heat transfer systems will result in increased efficiency of the energy system and reduced of US dependency on foreign energy sources. The industrial partnership accelerates the assimilation of basic science research into industrial practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国 55% 以上的能源消耗都以废热形式释放。仅就制造业而言,每年未回收的废热总量估计为 2,500 万亿 BTU。美国汽车的废热相当于每年损失超过500亿美元。在各种废热回收技术中,固态热电发电机(TEG)是提高能源效率、减轻空气污染和减少碳排放的一种有前景的策略。传统的TEG制造包括材料合成、模块组装和器件集成,生产率低、成本高。只有解决 TEG 制造中的以下关键挑战,才能实现 TEG 在现有能源系统中的广泛部署:经济有效地合成丰富、低成本、可靠和高 ZT(品质因数)热电材料; TEG 设备的可扩展制造;温度梯度环境下的功能梯度实现。该项目采用基于增材制造 (AM) 的净形状纳米制造工艺,利用材料科学、传热和制造领域的最新进展来应对这些挑战。为了实现这一雄心勃勃的目标,弗吉尼亚理工大学、卡内基梅隆大学和华盛顿大学与增材制造行业领导者合作,组建了一个由能量收集、材料科学家、传热和制造组成的跨学科团队。来自不同背景的学生将接受二十一世纪劳动力的培训。我们还将大力宣传 K12 学生。该项目的目标是使用基于选择性激光熔化(SLM)的增材制造方法开发一种新型集成纳米制造工艺,用于高性能热电材料和功能器件。此外,还将建立激光加工变量和热电材料特性之间的相关性,以提供对激光-材料相互作用的基本理解,从而实现热电器件的净形状和可扩展的增材制造方法。具体来说,将测试以下假设:(1)激光增材制造过程中产生的非平衡条件会引入大量纳米缺陷、纳米级颗粒和丰富的多尺度晶界,从而显着降低热导率通过声子散射。 (2)掺杂Si或其他纳米颗粒将在纳米制造过程中作为添加材料,以改善机械性能、增强导电性、增加塞贝克系数。 (3)基于激光的增材制造可以很容易地实现沿热电元件长度方向的梯度掺杂和可变横截面积,从而充分利用随温度变化的材料特性来实现高性能热电器件。 (4) 使用基于激光的增材制造,直接制造热电材料、隔热层、电导体层和热交换器作为功能性和集成能量收集系统,与传统的增材制造相比,可以产生更高的机械稳定性和热可靠性。传统的制造方法。该技术具有低成本、高效率和工业可扩展的清洁能源系统纳米制造的特点,如果成功测试和验证,将对许多与能源和制造系统相关的行业(例如汽车、发电站、钢铁厂等等。了解热电材料的电子和声子传输的基本原理、开发下一代制造工具以及设计新型传热系统将提高能源系统的效率并减少美国对外国能源的依赖。工业合作伙伴关系加速了基础科学研究与工业实践的同化。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electron-phonon coupling and superconductivity in the doped topological crystalline insulator (Pb0.5Sn0.5)1−xInxTe
掺杂拓扑晶体绝缘体 (Pb0.5Sn0.5)1×xInxTe 中的电子声子耦合和超导
- DOI:10.1103/physrevb.102.104511
- 发表时间:2020-09
- 期刊:
- 影响因子:3.7
- 作者:Sapkota, A.;Li, Y.;Winn, B. L.;Podlesnyak, A.;Xu, Guangyong;Xu, Zhijun;Ran, Kejing;Chen, Tong;Sun, Jian;Wen, Jinsheng;et al
- 通讯作者:et al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jihui Yang其他文献
Solid solubility of Ir and Rh at the Co sites of skutterudites
Ir 和 Rh 在方钴矿 Co 位点的固溶度
- DOI:
10.1063/1.2749490 - 发表时间:
2007-06-27 - 期刊:
- 影响因子:3.2
- 作者:
Xun Shi;Zhen;W. Zhang;L. Chen;Jihui Yang;C. Uher - 通讯作者:
C. Uher
Effect of intermixing at CdS/CdTe interface on defect properties
CdS/CdTe 界面混合对缺陷性质的影响
- DOI:
10.1063/1.4959848 - 发表时间:
2016-07-28 - 期刊:
- 影响因子:4
- 作者:
Ji;Jihui Yang;T. Barnes;S. Wei - 通讯作者:
S. Wei
Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure
直接确定大晶格失配 CdS/CdTe 异质结构的界面结构和能带偏移
- DOI:
10.1088/0256-307x/37/9/096802 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:3.5
- 作者:
Quanyin Tang;Jihui Yang;Zhipan Liu;Xin - 通讯作者:
Xin
Low thermal conductivity materials for advanced thermoelectric applications.
用于先进热电应用的低导热率材料。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Jihui Yang - 通讯作者:
Jihui Yang
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
CdTe 中 Sb、As 和 P 扩散机制和掺杂的实验和理论比较
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
E. Colegrove;Jihui Yang;Stephen B. Harvey;M. Young;J. Burst;J. Duenow;D. Albin;S. Wei;W. Metzger - 通讯作者:
W. Metzger
Jihui Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jihui Yang', 18)}}的其他基金
DMREF/GOALI: High Efficiency Hierarchical Thermoelectric Composites by Multiscale Materials Design and Development
DMREF/GOALI:通过多尺度材料设计和开发实现高效分层热电复合材料
- 批准号:
1235535 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
内质网应激通过m6A甲基化调控牛卵巢颗粒细胞坏死性凋亡机制研究
- 批准号:32372887
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
GRAIL通过泛素化修饰MFN2调控内质网应激在动脉粥样硬化中的作用及机制研究
- 批准号:82300512
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于内质网信号肽耦连多肽文库筛选TAP缺陷诱导肝癌免疫逃逸机制及mRNA疫苗逆转策略的研究
- 批准号:82372798
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于内质网应激探讨PP4R1/HSPA6轴调控巨噬细胞极化和NSCLC恶性进展的研究
- 批准号:82372611
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
震损后铝合金单层网壳板式节点抗火性能基础理论研究
- 批准号:52378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
- 批准号:
2324766 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
- 批准号:
2324765 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
- 批准号:
2336907 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
- 批准号:
2336906 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Corporate Net Zero Goals for Decarbonization
合作研究:企业脱碳净零目标
- 批准号:
2319900 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant