EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Econometrically Inferring and Using Individual Privacy Preferences

EAGER:SaTC:早期跨学科合作:计量经济学推断和使用个人隐私偏好

基本信息

  • 批准号:
    1915813
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Many online platforms use economic mechanisms to estimate the best ways to match consumers and businesses with products and services. Effective matches may require using personal consumer data but doing so may intrude on consumers' privacy. This project will use formal concepts of privacy to analyze the use of personal information in mechanism design. The goal is to develop tools for understanding the value and cost of collecting and using personal data, and provide mechanisms that allow designers to build systems that make meaningful and well understood tradeoffs between utility and privacy.The project combines research on mechanism design and econometrics to provide a new perspective on privacy. The project will develop methods that use ideas from econometrics to reveal concrete privacy preferences for individuals and aggregate distributions, and connect those preferences to formal privacy models, including differential privacy. The revealed privacy preferences for individuals, or aggregate for distributions, can then be used to design mechanisms with concrete and meaningful privacy and utility tradeoffs based on users' individual privacy preferences. The broader goal is to transform abstract privacy guarantees into concrete tools for incorporating privacy preferences to maximize consumer utility as well as business decisions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多在线平台使用经济机制来估计将消费者和企业与产品和服务相匹配的最佳方式。有效的匹配可能需要使用个人消费者数据,但这样做可能会侵犯消费者的隐私。 本项目将使用正式的隐私概念来分析机制设计中个人信息的使用。目标是开发工具来了解收集和使用个人数据的价值和成本,并提供机制,使设计者能够构建在效用和隐私之间做出有意义且易于理解的权衡的系统。该项目结合了机制设计和计​​量经济学的研究,为隐私提供了新的视角。该项目将开发一些方法,利用计量经济学的思想来揭示个人的具体隐私偏好和总体分布,并将这些偏好与正式的隐私模型(包括差异隐私)联系起来。然后,可以使用所揭示的个人隐私偏好或分布的汇总来设计基于用户个人隐私偏好的具体且有意义的隐私和效用权衡机制。更广泛的目标是将抽象的隐私保证转化为具体的工具,以纳入隐私偏好,以最大限度地提高消费者效用以及商业决策。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Privacy-Preserving Stochastic Nonconvex Optimization
高效的隐私保护随机非凸优化
Formalizing and Estimating Distribution Inference Risks
形式化和估计分布推理风险
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Nekipelov其他文献

Nonparametric and Semiparametric Analysis of a Dynamic Discrete Game
动态离散博弈的非参数和半参数分析
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Bajari;V. Chernozhukov;H. Hong;Denis Nekipelov
  • 通讯作者:
    Denis Nekipelov
Regularised orthogonal machine learning for nonlinear semiparametric models
非线性半参数模型的正则正交机器学习
  • DOI:
    10.1093/ectj/utab022
  • 发表时间:
    2018-06-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Denis Nekipelov;V. Semenova;Vasilis Syrgkanis
  • 通讯作者:
    Vasilis Syrgkanis
A Two-Dimensional Criterion for Tax Policy Evaluation. A Primer from the Reform of Personal Income Taxation in Russia
税收政策评估的二维标准。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Denis Nekipelov
  • 通讯作者:
    Denis Nekipelov
Comments on “identification and semiparametric estimation of a finite horizon dynamic discrete choice model with a terminating action”
对“具有终止动作的有限水平动态离散选择模型的识别和半参数估计”的评论
  • DOI:
    10.1007/s11129-019-09210-w
  • 发表时间:
    2019-04-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Øystein Daljord;Denis Nekipelov;Minjung Park
  • 通讯作者:
    Minjung Park
Robust Data-Driven Efficiency Guarantees in Auctions
拍卖中强大的数据驱动效率保证
  • DOI:
    10.1109/tiptekno.2019.8895158
  • 发表时间:
    2015-05-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Hoy;Denis Nekipelov;Vasilis Syrgkanis
  • 通讯作者:
    Vasilis Syrgkanis

Denis Nekipelov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Nekipelov', 18)}}的其他基金

Convergence Accelerator Phase I (RAISE): Unpacking the Technology Career Path
融合加速器第一阶段 (RAISE):揭开技术职业道路
  • 批准号:
    1936956
  • 财政年份:
    2019
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Econometric Inference and Algorithmic Learning in Games
AF:媒介:协作研究:游戏中的计量经济学推理和算法学习
  • 批准号:
    1563708
  • 财政年份:
    2016
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
  • 批准号:
    1449239
  • 财政年份:
    2014
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
  • 批准号:
    1101706
  • 财政年份:
    2011
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Statistical Properties of Numerical Derivatives and Algorithms
数值导数和算法的统计性质
  • 批准号:
    1025035
  • 财政年份:
    2010
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
  • 批准号:
    2128642
  • 财政年份:
    2021
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
  • 批准号:
    2128642
  • 财政年份:
    2021
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: A Case- and Play-Based Learning Module for Cybersecurity and Artificial Intelligence Education for Early Teen Learners
EAGER:SaTC-EDU:针对早期青少年学习者的网络安全和人工智能教育的基于案例和游戏的学习模块
  • 批准号:
    2113803
  • 财政年份:
    2021
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Instilling a Mindset of Adversarial Thinking into Computer Science Courses Early and Often
EAGER:SaTC-EDU:尽早且经常地将对抗性思维方式灌输到计算机科学课程中
  • 批准号:
    2039354
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Understanding group digital security practices
EAGER:SaTC:早期跨学科合作:了解团体数字安全实践
  • 批准号:
    1915768
  • 财政年份:
    2019
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了