AF: Medium: Collaborative Research: Econometric Inference and Algorithmic Learning in Games
AF:媒介:协作研究:游戏中的计量经济学推理和算法学习
基本信息
- 批准号:1563708
- 负责人:
- 金额:$ 44.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical work on economic analysis of the interactions of strategic agents starts with players that have valuations for outcomes, such as items or sets of items they may win in an auction, and analyzes equilibria of the resulting game, where players optimize their strategies to improve their outcomes. To empirically test the prediction of such a theory, one needs to recover valuations of the players. Most econometric methods used to recover valuations rely on the assumption that the game is at a stable equilibrium (known as a Nash equilibrium). It is not surprising that such a framework provides a poor fit to the data in changing or new markets. At the same time, there is a growing theoretical literature in algorithmic game theory that allows one to study games where the game is not at a stable equilibrium. The PIs? program focuses on developing a methodology for inference without relying on the standard notions of the stability of outcomes in dynamically changing environments, such as online auctions. The goal of this project is to develop a theory that allows the researchers to take advantage of new dynamic data sets from electronic markets available on the Internet, and using the findings from the data to further the underlying theory. The results of the project are intended to enable to application and development of Data Science tools for analysis and prediction in non-stable and new market settings. This will affect a broad community of empirical researchers such as market analysts, by allowing them to study economic markets that have previously been considered hard or impossible to analyze.The research program is based on using the theoretical results from algorithmic game theory on game outcomes when players use no-regret learning rules and combine these results with econometric techniques that allow one to estimate the best responses of players from the data using a set of non-parametric estimation techniques. The goal of the program, which PIs initiated in a paper in the ACM Conference on Economics and Computation in 2014, is to combine these approaches to develop a set of analytic tools for empirical analysis of games in non-equilibrium settings. Algorithmic game theory helps one to characterize the properties of outcomes in games (such as approximating factors for revenue and welfare in various cases), where the game is not at a stable equilibrium, assuming players use strategies that guarantee a certain no-regret property in place of the stronger equilibrium best response assumption. The project is aimed at combining the insights from algorithmic game theory with econometric methods to enable the analysis of dynamic markets. The intellectual merit of the project is twofold: (i) providing a methodology for inference in games (i.e., estimation of the payoff functions of players and the distribution of player types) in cases where the players use general classes of learning strategies; (ii) providing tools for the analysis of outcomes in non-equilibrium environments, including the analysis of statistical properties of the outcomes constructed using inferred preferences and types.
对战略主体相互作用进行经济分析的经典工作从对结果(例如他们可能在拍卖中赢得的物品或物品组)进行评估的玩家开始,并分析最终博弈的均衡,其中玩家优化策略以提高他们的策略。结果。为了对这一理论的预测进行实证检验,我们需要恢复对参与者的估值。大多数用于恢复估值的计量经济学方法都依赖于博弈处于稳定均衡(称为纳什均衡)的假设。毫不奇怪,这样的框架无法适应不断变化的或新的市场中的数据。与此同时,算法博弈论中的理论文献越来越多,使人们能够研究博弈不稳定均衡的博弈。 PI?该计划的重点是开发一种推理方法,而不依赖于动态变化的环境(例如在线拍卖)中结果稳定性的标准概念。该项目的目标是开发一种理论,使研究人员能够利用互联网上可用的电子市场的新动态数据集,并利用数据的发现来进一步发展基础理论。该项目的结果旨在促进数据科学工具的应用和开发,以在不稳定和新的市场环境中进行分析和预测。这将影响市场分析师等实证研究人员的广泛群体,让他们能够研究以前被认为难以或不可能分析的经济市场。该研究计划基于使用算法博弈论关于博弈结果的理论结果,当玩家使用无悔学习规则,并将这些结果与计量经济学技术相结合,使人们能够使用一组非参数估计技术从数据中估计玩家的最佳反应。该项目由 PI 于 2014 年在 ACM 经济与计算会议上的一篇论文中发起,其目标是结合这些方法来开发一套分析工具,用于对非均衡环境下的博弈进行实证分析。算法博弈论有助于描述博弈结果的属性(例如各种情况下收入和福利的近似因素),其中博弈不处于稳定均衡状态,假设玩家使用保证某种无悔属性的策略。更强的均衡最佳响应假设的位置。该项目旨在将算法博弈论的见解与计量经济学方法相结合,以实现动态市场的分析。该项目的智力价值有两个:(i)在玩家使用一般类别的学习策略的情况下,提供一种游戏推理方法(即估计玩家的收益函数和玩家类型的分布); (ii) 提供用于分析非均衡环境中的结果的工具,包括分析使用推断的偏好和类型构建的结果的统计特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Nekipelov其他文献
A Two-Dimensional Criterion for Tax Policy Evaluation. A Primer from the Reform of Personal Income Taxation in Russia
税收政策评估的二维标准。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Denis Nekipelov - 通讯作者:
Denis Nekipelov
Nonparametric and Semiparametric Analysis of a Dynamic Discrete Game
动态离散博弈的非参数和半参数分析
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Patrick Bajari;V. Chernozhukov;H. Hong;Denis Nekipelov - 通讯作者:
Denis Nekipelov
Comments on “identification and semiparametric estimation of a finite horizon dynamic discrete choice model with a terminating action”
对“具有终止动作的有限水平动态离散选择模型的识别和半参数估计”的评论
- DOI:
10.1007/s11129-019-09210-w - 发表时间:
2019-04-11 - 期刊:
- 影响因子:0
- 作者:
Øystein Daljord;Denis Nekipelov;Minjung Park - 通讯作者:
Minjung Park
Regularised orthogonal machine learning for nonlinear semiparametric models
非线性半参数模型的正则正交机器学习
- DOI:
10.1093/ectj/utab022 - 发表时间:
2018-06-13 - 期刊:
- 影响因子:0
- 作者:
Denis Nekipelov;V. Semenova;Vasilis Syrgkanis - 通讯作者:
Vasilis Syrgkanis
Robust Data-Driven Efficiency Guarantees in Auctions
拍卖中强大的数据驱动效率保证
- DOI:
10.1109/tiptekno.2019.8895158 - 发表时间:
2015-05-03 - 期刊:
- 影响因子:0
- 作者:
D. Hoy;Denis Nekipelov;Vasilis Syrgkanis - 通讯作者:
Vasilis Syrgkanis
Denis Nekipelov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Nekipelov', 18)}}的其他基金
Convergence Accelerator Phase I (RAISE): Unpacking the Technology Career Path
融合加速器第一阶段 (RAISE):揭开技术职业道路
- 批准号:
1936956 - 财政年份:2019
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Econometrically Inferring and Using Individual Privacy Preferences
EAGER:SaTC:早期跨学科合作:计量经济学推断和使用个人隐私偏好
- 批准号:
1915813 - 财政年份:2019
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
- 批准号:
1449239 - 财政年份:2014
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: Towards Realistic Mechanisms: statistics, inference, and approximation in simple Bayes-Nash implementation
ICES:大型:协作研究:走向现实机制:简单贝叶斯-纳什实现中的统计、推理和近似
- 批准号:
1101706 - 财政年份:2011
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
Statistical Properties of Numerical Derivatives and Algorithms
数值导数和算法的统计性质
- 批准号:
1025035 - 财政年份:2010
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402835 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant