CPS: Medium: Computation-Aware Autonomy for Timely and Resilient Multi-Agent Systems

CPS:中:及时且有弹性的多代理系统的计算感知自治

基本信息

项目摘要

We are entering an age of unprecedented access to information, where transformational methodologies are demonstrating a clear vision of an autonomy-driven future. Self-driving cars, precision agriculture, robotic monitoring, and infrastructure inspection are but a few areas experiencing an autonomy revolution. To continue in this promising direction, it is critical that we facilitate the safe and reliable coordination of diverse cyber-physical systems (CPS).Unfortunately, at present there is a wide gap in our understanding that limits this goal: a stark divide exists between algorithms for decision-making, sensing, and motion, and underlying computational resources. This project therefore seeks to define computation-aware autonomy by answering the following questions: (1) How does an environment impact computation? (2) How should autonomy adapt to improve computational awareness? (3) How are computational resources optimized at run-time in support of autonomy? and (4) How is autonomy software rendered resilient to errors? This project aims to answer these questions through optimization, computational resource management, and software resilience, with evaluation in an outdoor robotic testbed. Finally, the broader impacts of this work include: (1) K-12 academic experiences for underrepresented students in collaboration with Virginia Tech's Center for Enhancement of Engineering Diversity; (2) autonomy curriculum and design projects; and (3) participation in a series of symposiums through the Ridge and Valley chapter of the Association for Unmanned Vehicle Systems International.This project focuses on the investigation of: (1) a unified theory and scalable algorithms for multi-agent task allocation and motion planning with constraints on run-time resource optimization and software reliability; (2) efficient analysis and optimization techniques for run-time resource optimization in time-critical CPS; (3) lightweight and flexible methodologies for achieving soft error resilience in computational kernels for autonomy; and (4) a heterogeneous multi-agent testbed for target tracking and infrastructure mapping missions. This project will advance knowledge in the largely unexplored areas of computation and reliability-aware task allocation and motion planning, run-time resource optimization, and flexible software reliability. The new unified approach closes the loop for robust task allocation and motion planning as it acts as a fundamental tool to advance scalability, adaptability, resiliency, safety, security, and usability of CPS with provable behaviors in increasingly complex multi-agent missions across dynamic environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们正在进入一个前所未有的信息获取时代,变革性的方法论正在展示自主驱动的未来的清晰愿景。自动驾驶汽车、精准农业、机器人监控和基础设施检查只是正在经历自主革命的几个领域。为了继续朝着这个有希望的方向发展,我们必须促进不同网络物理系统(CPS)的安全可靠的协调。不幸的是,目前我们的理解存在巨大差距,限制了这一目标:之间存在明显的分歧用于决策、传感和运动的算法以及底层计算资源。因此,该项目试图通过回答以下问题来定义计算感知的自治:(1)环境如何影响计算? (2)自治应如何适应以提高计算意识? (3) 如何在运行时优化计算资源以支持自治? (4) 自治软件如何能够抵御错误?该项目旨在通过优化、计算资源管理和软件弹性来回答这些问题,并在室外机器人测试台上进行评估。最后,这项工作的更广泛影响包括:(1) 与弗吉尼亚理工大学工程多样性增强中心合作,为代表性不足的学生提供 K-12 学术体验; (2)自主课程和设计项目; (3) 通过国际无人驾驶车辆系统协会山脊和山谷分会参加一系列研讨会。该项目重点研究:(1) 用于多智能体任务分配和运动的统一理论和可扩展算法在运行时资源优化和软件可靠性约束下进行规划; (2) 时间关键型 CPS 中运行时资源优化的高效分析和优化技术; (3) 在自治计算内核中实现软错误恢复的轻量级且灵活的方法; (4) 用于目标跟踪和基础设施测绘任务的异构多智能体测试台。该项目将推进计算和可靠性感知任务分配和运动规划、运行时资源优化和灵活的软件可靠性等尚未探索的领域的知识。新的统一方法闭合了稳健的任务分配和运动规划的循环,因为它作为基本工具来提高 CPS 的可扩展性、适应性、弹性、安全性和可用性,并在动态环境中日益复杂的多代理任务中提供可证明的行为该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S-Bottleneck Scheduling with Safety-Performance Trade-offs in Stochastic Conditional DAG Models
随机条件 DAG 模型中具有安全性能权衡的 S 瓶颈调度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashrarul Haq Sifat, Xuanliang Deng
  • 通讯作者:
    Ashrarul Haq Sifat, Xuanliang Deng
A General and Scalable Method for Optimizing Real-Time Systems with Continuous Variables
Towards computational awareness in autonomous robots: an empirical study of computational kernels
  • DOI:
    10.1007/s40747-023-01059-7
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Ashrarul H. Sifat;Burhanuddin Bharmal;Haibo Zeng;Jiabin Huang;Changhee Jung;Ryan K. Williams
  • 通讯作者:
    Ashrarul H. Sifat;Burhanuddin Bharmal;Haibo Zeng;Jiabin Huang;Changhee Jung;Ryan K. Williams
A Safety-Performance Metric Enabling Computational Awareness in Autonomous Robots
  • DOI:
    10.1109/lra.2023.3300251
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ashrarul H. Sifat;Xuanliang Deng;Burhanuddin Bharmal;Sen Wang;Shao-Yu Huang;Jiabin Huang;Chang-Rae Jung;Haibo Zeng;Ryan K. Williams
  • 通讯作者:
    Ashrarul H. Sifat;Xuanliang Deng;Burhanuddin Bharmal;Sen Wang;Shao-Yu Huang;Jiabin Huang;Chang-Rae Jung;Haibo Zeng;Ryan K. Williams
A General Scheduling Framework for Multi-objective Real-time Systems
多目标实时系统的通用调度框架
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sen Wang, Ashrarul Haq
  • 通讯作者:
    Sen Wang, Ashrarul Haq
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Williams其他文献

Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting
促进干预效果知识积累:探索标准化统计方法和效应量报告的策略
  • DOI:
    10.3102/0013189x211051319
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Joseph A. Taylor;T. Pigott;Ryan Williams
  • 通讯作者:
    Ryan Williams
All-pairs bottleneck paths for general graphs in truly sub-cubic time
真正亚立方时间内一般图的全对瓶颈路径
Utility of in-session assessments during cognitive behavioral therapy for depression after traumatic brain injury: Results from a randomized controlled trial.
创伤性脑损伤后抑郁症认知行为治疗期间评估的效用:随机对照试验的结果。
  • DOI:
    10.3233/nre-230218
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Jennifer M. Erickson;Ryan Williams;C. Bombardier;J. Fann
  • 通讯作者:
    J. Fann
Natural proofs versus derandomization
自然证明与去随机化
  • DOI:
    10.1145/2488608.2488612
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Williams
  • 通讯作者:
    Ryan Williams
Sharp threshold results for computational complexity
计算复杂度的尖锐阈值结果

Ryan Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Williams', 18)}}的其他基金

Examining relationships among teacher professional learning and associated teacher and student outcomes in math and science: A meta-analytic approach to mediation and moderation
检查教师专业学习与数学和科学方面相关教师和学生成果之间的关系:调解和调节的元分析方法
  • 批准号:
    2300544
  • 财政年份:
    2023
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant
CAREER: Robots that Plan Interactions, Come and Go, and Build Trust
职业:规划交互、来来去去并建立信任的机器人
  • 批准号:
    2046770
  • 财政年份:
    2021
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant
AF: Small: Lower Bounds in Complexity Theory Via Algorithms
AF:小:通过算法实现复杂性理论的下界
  • 批准号:
    2127597
  • 财政年份:
    2021
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Standard Grant
NRI: INT: Balancing Collaboration and Autonomy for Multi-Robot Multi-Human Search and Rescue
NRI:INT:平衡多机器人多人搜索和救援的协作与自主
  • 批准号:
    1830414
  • 财政年份:
    2018
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
  • 批准号:
    1741615
  • 财政年份:
    2017
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
  • 批准号:
    1657235
  • 财政年份:
    2017
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1741638
  • 财政年份:
    2017
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1617580
  • 财政年份:
    2016
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Standard Grant
NRI: Coordinated Detection and Tracking of Hazardous Agents with Aerial and Aquatic Robots to Inform Emergency Responders
NRI:与空中和水上机器人协调检测和跟踪危险物质,以通知紧急救援人员
  • 批准号:
    1637915
  • 财政年份:
    2016
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
  • 批准号:
    1552651
  • 财政年份:
    2015
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: New Constructions for Garbled Computation
协作研究:SaTC:核心:中:乱码计算的新结构
  • 批准号:
    2246355
  • 财政年份:
    2023
  • 资助金额:
    $ 119.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了