CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
基本信息
- 批准号:1552651
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-15 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of algorithm design builds clever programs that can quickly solve computational problems of interest. The field of complexity theory mathematically proves "lower bounds," showing that no such clever program exists for (other) core problems. Intuitively, it appears that these two fields work on polar-opposite tasks. The major goal of this project is to discover counter-intuitive new connections between algorithm design and complexity theory, and to study the scientific consequences of the bridges built by these connections. It is hard to overestimate the potential impact---societal, scientific, and otherwise---of a theoretical framework which would lead to a fine-grained understanding of what computers can and cannot do. This project is focused on exploring concrete steps towards a better understanding, via studying links between the seemingly opposite tasks of algorithms and lower bounds. Another goal of the project is to bring complexity research closer to real-world computing, and to introduce practitioners to aspects of complexity that will impact their work. A final goal is educational outreach, through online forums dedicated to learning computer science, teaching summer school courses, and collaboration with the media on communicating theoretical computer science (including links between algorithms and lower bounds) to the public.The PI seeks common links between algorithms and complexity: counter-intuitive similarities and bridges which will lead to greater insight into both areas. A central question in computer science is the famous P versus NP open problem, which is about the difficulty of combinatorial problems which admit short solutions. Such problems can always be solved via ?brute force?, trying all possible solutions. Can brute force always be replaced with a cleverer search method? This question is a major one; no satisfactory answers are known, and concrete answers seem far away. The conventional wisdom is that in general, brute force cannot be entirely avoided, but it is still mathematically possible that most natural search problems can be solved extremely rapidly, without any brute force. Computational lower bounds are among the great scientific mysteries of our time: there are many conjectures and beliefs about them, but concrete results are few. Moreover, the theory is hampered by ?complexity barriers? which show that most known proof methods are incapable of proving strong lower bounds. The PI's long-term objective is to help discover and develop new ways of thinking that will demystify lower bounds, and elucidate the limits of possibilities of computing. The PI hypothesizes that an algorithmic perspective on lower bounds is the key: for example, earlier work of the PI shows that algorithms for the circuit satisfiability problem (which slightly beat brute force search) imply circuit complexity lower bounds. The PI has developed several new links within the past few years, and has proposed many more to be investigated. Among the various angles explored in this project, the potential scientific applications are vast, ranging from logical circuit design, to network algorithms, to improved hardware and software testing, to better nearest-neighbor search (with its own applications in computer vision, DNA sequencing, and machine learning), and to cryptography and security.
算法设计领域构建了可以快速解决感兴趣的计算问题的巧妙程序。复杂性理论领域在数学上证明了“下界”,表明对于(其他)核心问题不存在这样聪明的程序。直观上,这两个领域似乎致力于截然相反的任务。该项目的主要目标是发现算法设计和复杂性理论之间反直觉的新联系,并研究这些联系所建立的桥梁的科学后果。很难高估一个理论框架的潜在影响——社会、科学和其他方面——它将导致对计算机能做什么和不能做什么的精细理解。该项目的重点是通过研究看似相反的算法任务和下界之间的联系,探索更好理解的具体步骤。该项目的另一个目标是使复杂性研究更接近现实世界的计算,并向从业者介绍将影响他们工作的复杂性的各个方面。最终目标是教育推广,通过致力于学习计算机科学的在线论坛、教授暑期学校课程以及与媒体合作向公众传播理论计算机科学(包括算法和下界之间的联系)。PI 寻求以下方面的共同联系:算法和复杂性:反直觉的相似性和桥梁,这将导致对这两个领域有更深入的了解。计算机科学中的一个核心问题是著名的 P 与 NP 开放问题,该问题是关于允许短解的组合问题的难度。此类问题总是可以通过“暴力”来解决,尝试所有可能的解决方案。暴力搜索是否总能被更聪明的搜索方法所取代?这个问题是一个重大问题;目前还没有令人满意的答案,具体答案似乎还很遥远。传统观点认为,一般来说,无法完全避免暴力破解,但从数学上来说,大多数自然搜索问题仍然可以非常快速地解决,而不需要任何暴力破解。计算下界是我们这个时代最大的科学谜团之一:关于它们有很多猜想和信念,但具体的结果却很少。此外,该理论还受到“复杂性障碍”的阻碍。这表明大多数已知的证明方法无法证明强下界。 PI 的长期目标是帮助发现和开发新的思维方式,从而揭开下限的神秘面纱,并阐明计算可能性的极限。 PI 假设对下限的算法视角是关键:例如,PI 的早期工作表明,电路可满足性问题的算法(稍微击败强力搜索)意味着电路复杂性下限。 PI 在过去几年中开发了几个新链接,并提出了更多需要调查的链接。在这个项目探索的各个角度中,潜在的科学应用是巨大的,从逻辑电路设计到网络算法,到改进的硬件和软件测试,到更好的最近邻搜索(在计算机视觉、DNA测序等方面都有自己的应用)和机器学习),以及密码学和安全性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Williams其他文献
Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting
促进干预效果知识积累:探索标准化统计方法和效应量报告的策略
- DOI:
10.3102/0013189x211051319 - 发表时间:
2021 - 期刊:
- 影响因子:8.2
- 作者:
Joseph A. Taylor;T. Pigott;Ryan Williams - 通讯作者:
Ryan Williams
All-pairs bottleneck paths for general graphs in truly sub-cubic time
真正亚立方时间内一般图的全对瓶颈路径
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
V. V. Williams;Ryan Williams;R. Yuster - 通讯作者:
R. Yuster
Utility of in-session assessments during cognitive behavioral therapy for depression after traumatic brain injury: Results from a randomized controlled trial.
创伤性脑损伤后抑郁症认知行为治疗期间评估的效用:随机对照试验的结果。
- DOI:
10.3233/nre-230218 - 发表时间:
2024 - 期刊:
- 影响因子:2
- 作者:
Jennifer M. Erickson;Ryan Williams;C. Bombardier;J. Fann - 通讯作者:
J. Fann
Natural proofs versus derandomization
自然证明与去随机化
- DOI:
10.1145/2488608.2488612 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ryan Williams - 通讯作者:
Ryan Williams
Sharp threshold results for computational complexity
计算复杂度的尖锐阈值结果
- DOI:
10.1145/3357713.3384283 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Lijie Chen;Ce Jin;Ryan Williams - 通讯作者:
Ryan Williams
Ryan Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Williams', 18)}}的其他基金
Examining relationships among teacher professional learning and associated teacher and student outcomes in math and science: A meta-analytic approach to mediation and moderation
检查教师专业学习与数学和科学方面相关教师和学生成果之间的关系:调解和调节的元分析方法
- 批准号:
2300544 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Robots that Plan Interactions, Come and Go, and Build Trust
职业:规划交互、来来去去并建立信任的机器人
- 批准号:
2046770 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
AF: Small: Lower Bounds in Complexity Theory Via Algorithms
AF:小:通过算法实现复杂性理论的下界
- 批准号:
2127597 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CPS: Medium: Computation-Aware Autonomy for Timely and Resilient Multi-Agent Systems
CPS:中:及时且有弹性的多代理系统的计算感知自治
- 批准号:
1932074 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NRI: INT: Balancing Collaboration and Autonomy for Multi-Robot Multi-Human Search and Rescue
NRI:INT:平衡多机器人多人搜索和救援的协作与自主
- 批准号:
1830414 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
- 批准号:
1741615 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
- 批准号:
1657235 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
- 批准号:
1741638 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NRI: Coordinated Detection and Tracking of Hazardous Agents with Aerial and Aquatic Robots to Inform Emergency Responders
NRI:与空中和水上机器人协调检测和跟踪危险物质,以通知紧急救援人员
- 批准号:
1637915 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
- 批准号:
1617580 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
西双版纳常见桑寄生和寄主水力结构和功能的比较研究
- 批准号:32301308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
东南亚热带雨林常见树种幼苗气孔开闭速度的调控机理及其对生长的影响
- 批准号:32301298
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适龄儿童常见二类疫苗接种及时性与抗体滴度差异和VPD发病的层次贝叶斯时空模型研究
- 批准号:82360666
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于SERS信号编码的高通量免疫层析技术用于6种常见呼吸道病毒的快速精准筛查
- 批准号:82302638
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于血浆cfDNA片段组学特征的液体活检技术在常见消化道肿瘤筛查中的应用研究
- 批准号:82373664
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Preclinical investigation of common mechanistic links between aberrant protein aggregation and blood-brain barrier dysfunction in Alzheimer's disease and Alzheimer's related dementias (AD/ADRD)
阿尔茨海默病和阿尔茨海默病相关痴呆 (AD/ADRD) 中异常蛋白聚集与血脑屏障功能障碍之间常见机制联系的临床前研究
- 批准号:
10037968 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Neural Links of Approach Bias Modification in Heavy Drinking Veterans
酗酒退伍军人方法偏差修正的神经联系
- 批准号:
9231309 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
- 批准号:
1741615 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Neural Links of Approach Bias Modification in Heavy Drinking Veterans
酗酒退伍军人方法偏差修正的神经联系
- 批准号:
10477959 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Neural Links of Approach Bias Modification in Heavy Drinking Veterans
酗酒退伍军人方法偏差修正的神经联系
- 批准号:
10291809 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别: