Collaborative Research: Framework: Cyberloop for Accelerated Bionanomaterials Design
合作研究:框架:加速生物纳米材料设计的 Cyberloop
基本信息
- 批准号:1931304
- 负责人:
- 金额:$ 59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The evolution of biological and materials systems must be understood at many scales in order to achieve groundbreaking advances. Areas that are impacted include the health sciences, materials sciences, energy conversion, sustainability, and overall quality of life. Molecular simulations using complex models and configurations play an increasing role in such efforts. They address the limitations of experiments which study events over very small time and length scales. Such simulations require great expertise due to the complexity of the systems being studied. and the tools being used. This is particularly true for systems containing both inorganic and biological materials. This project will help researchers to quickly set up complex simulations, carry out the simulations with high accuracy, and assess uncertainties in the results. They will help develop the Cyberloop computational infrastructure. Cyberloop will dramatically reduce the time required to perform state-of-the-art simulations. They will also help to educate the next generation of researchers in this important field.Cyberloop will integrate three existing successful platforms for soft matter and solid state simulations (IFF, OpenKIM, and CHARMM-GUI) into a single unified framework. These systems will work together to enable users to set up complex bionanomaterial configurations, select reliable validated force fields, generate input scripts for popular simulation platforms, and assess the uncertainty in the results. The integration of these tools requires a host of technological and scientific innovations including: automated charge assignment protocols and file conversions, expansion of the Interface force field (IFF) to new systems, generation of new surface models, extension of the Open Knowledgebase of Interatomic Models (OpenKIM) to bonded force fields, development of machine learning based force field selection and uncertainty tools, and development of new Nanomaterial Builder and Bionano Builder modules in CHARMM-GUI. Cyberloop fulfils a critical need in the user community to discover and engineer new multi-component bionanomaterials to create the next generation of therapeutics, materials for energy conversion, and ultrastrong composites. The project will facilitate the training of graduate students, undergraduate students, and postdoctoral scholars, including underrepresented and minority students, at the participating institutions to prepare an interdisciplinary scientific workforce with significant experience in cyber-enabled technology. Online educational materials and tutorials will help increase participation in bionanomaterial research across academia and government. This award is jointly supported by the NSF Office of Advanced Cyberinfrastructure, and the Division of Materials Research and the Division of Chemistry within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
必须在许多尺度上理解生物和材料系统的演变,以实现突破性的进步。受影响的领域包括健康科学,材料科学,能量转换,可持续性和整体生活质量。使用复杂模型和配置的分子模拟在此类努力中起着越来越多的作用。他们解决了在很小的时间和长度尺度上研究事件的实验的局限性。由于所研究的系统的复杂性,此类模拟需要大量的专业知识。以及所使用的工具。对于包含无机材料和生物材料的系统尤其如此。该项目将帮助研究人员快速建立复杂的模拟,以高精度进行模拟,并评估结果中的不确定性。它们将有助于开发网络卢比计算基础架构。网络卢比将大大减少执行最新模拟所需的时间。他们还将帮助将下一代研究人员在这一重要领域进行教育。Cyberloop将将三个现有的软件和固态模拟平台(IFF,OpenKim和Charmm-GUI)整合到一个统一的框架中。这些系统将共同努力,使用户能够设置复杂的BionAnomatial配置,选择可靠的经过验证的力场,为流行的仿真平台生成输入脚本,并评估结果中的不确定性。 The integration of these tools requires a host of technological and scientific innovations including: automated charge assignment protocols and file conversions, expansion of the Interface force field (IFF) to new systems, generation of new surface models, extension of the Open Knowledgebase of Interatomic Models (OpenKIM) to bonded force fields, development of machine learning based force field selection and uncertainty tools, and development of new Nanomaterial Builder and Bionano Builder charmm-gui中的模块。 Cyberloop满足了用户社区的关键需求,以发现和设计新的多组分BionAnomatials,以创建下一代的治疗方法,用于能源转化的材料和Ultrastrong复合材料。该项目将促进研究生,本科生和博士后学者(包括代表性不足和少数族裔学生)在参与机构的培训,以准备一名跨学科的科学劳动力,并在网络支持技术方面具有丰富的经验。在线教育材料和教程将有助于增加参与学术界和政府的Bionanomeatial研究。该奖项由NSF高级网络基础设施办公室共同支持,NSF数学和物理科学局内的材料研究和化学划分。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛影响的评估来评估CRITEIA CRITERIA CRITERIA,通过评估的支持值得。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty quantification in molecular simulations with dropout neural network potentials
- DOI:10.1038/s41524-020-00390-8
- 发表时间:2020-03
- 期刊:
- 影响因子:9.7
- 作者:Mingjian Wen;E. Tadmor
- 通讯作者:Mingjian Wen;E. Tadmor
Automated determination of grain boundary energy and potential-dependence using the OpenKIM framework
- DOI:10.1016/j.commatsci.2023.112057
- 发表时间:2022-12
- 期刊:
- 影响因子:3.3
- 作者:Brendon Waters;Daniel S. Karls;I. Nikiforov;R. Elliott;E. Tadmor;B. Runnels
- 通讯作者:Brendon Waters;Daniel S. Karls;I. Nikiforov;R. Elliott;E. Tadmor;B. Runnels
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ellad Tadmor其他文献
Ellad Tadmor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ellad Tadmor', 18)}}的其他基金
Workshop: Mid-scale RI-EW: Knowledgebase of Mesoscale Modeling and Experimentation (KnoMME); Minneapolis, Minnesota; Fall 2022 or Spring 2023
研讨会:中尺度 RI-EW:中尺度建模和实验知识库 (KnoMME);
- 批准号:
2231655 - 财政年份:2022
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Data CI Pilot: CI-Based Collaborative Development of Data-Driven Interatomic Potentials for Predictive Molecular Simulations
数据 CI 试点:基于 CI 的数据驱动原子间势的协作开发,用于预测分子模拟
- 批准号:
2039575 - 财政年份:2020
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)
协作研究:基于原子间模型知识库(KIM)的可靠材料模拟
- 批准号:
1834251 - 财政年份:2018
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Bridging the gap between atomistic simulations and fracture mechanics
NSF/DMR-BSF:弥合原子模拟和断裂力学之间的差距
- 批准号:
1607670 - 财政年份:2016
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
Collaborative Research: Accelerated Large-Scale Simulation Study of Atomic-Scale Wear Using Hyper-Quasicontinum
合作研究:使用超准连续加速原子尺度磨损的大规模模拟研究
- 批准号:
1462807 - 财政年份:2015
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Support for Rise of Data in Materials Research Workshop; University of Maryland; June 29-30, 2015
支持材料研究研讨会中数据的兴起;
- 批准号:
1542923 - 财政年份:2015
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Systematic Multiscale Modeling using the Knowledgebase of Interatomic Models (KIM)
合作研究:CDS
- 批准号:
1408211 - 财政年份:2014
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
Collaborative Research:CDI-Type II: The Knowledge-Base of Interatomic Models (KIM)
合作研究:CDI-Type II:原子间模型知识库(KIM)
- 批准号:
0941493 - 财政年份:2009
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
相似国自然基金
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:22204104
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
- 批准号:61571362
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
- 批准号:61571033
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
- 批准号:61401510
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant