Collaborative Research: CDS&E: Systematic Multiscale Modeling using the Knowledgebase of Interatomic Models (KIM)

合作研究:CDS

基本信息

  • 批准号:
    1408211
  • 负责人:
  • 金额:
    $ 99.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports OPENKIM which supports the community of researchers using computer simulations of atoms based on Newton's Laws to attack materials science, chemistry, engineering, and physics problems enabling the discovery of new materials, the design of new devices, the understanding of biochemical processes and much more. Atomistic simulations play a key role in realistic scientific, engineering, and industrial applications. These simulations increasingly use fitted interatomic models (IMs), mathematical prescriptions that describe the forces acting on atoms when they interact, to predict the properties of materials, the way they respond to external stresses, and to design innovative nanostructures, tiny structures of atoms some 100,000 times smaller than a human hair. In the past the potential of atomistic simulations of this kind has been limited by several factors: (1) the lack of a standardized application programing interface has made it difficult to transfer IMs from one simulation program to another; (2) the lack of a curated electronic repository for storing and exchanging computer implementations of IMs has made it difficult to reproduce published results; (3) the lack of tools for comparing the accuracy of IMs made it difficult to use IMs with confidence in new applications. These limitations have been addressed by the creation of the Open Knowledgebase of Interatomic Models (OpenKIM), a collaborative online materials project to rationalize, standardize, and characterize IMs. This award supports OpenKIM as it goes forward in important ways that will facilitate scientific and engineering progress in fields from growing electronic circuits to airplane manufacture. It will make sharp evaluations and comparisons between rival IMs and simulation methods, allowing computational researchers to rapidly explore alternative published IMs or develop and validate new ones for their use. It will also facilitate replication of results in scientific simulations. This project will extend OpenKIM in order to draw the computational chemistry and molecular biology communities into this materials endeavor, facilitating communication between two communities with common goals and interests but hitherto divided by language, units, and computational conventions. Students and post-docs in the group have the opportunity of collaborating with an international, interdisciplinary group of well-known scientists and engineers on a cross-section of challenging scientific problems, such as the role of defects in determining properties of materials and the effect of unsatisfied chemical bonds in electronic device operation. By lowering the barriers to entry into computational materials science, OpenKIM is facilitating the entry of underrepresented groups and those from developing nations into this technologically and scientifically central field.TECHNICAL SUMMARYThis award supports OpenKIM, a collaborative online materials project to rationalize, standardize, and characterize interatomic models (IMs) used to represent energies and forces between atoms in materials simulations. This project is aimed to support, extend, and leverage OpenKIM to do science. The Principal Investigators will blend the wisdom and experience of the materials community with advanced methods from machine learning, data mining, and information geometry to radically simplify and make more rigorous the field of atomistic simulations of materials. OpenKIM represents an unusual opportunity to answer fundamental scientific questions. With full and open access, the PIs anticipate many researchers will use the rich OpenKIM Repository to address scientific and methodological questions of the field. The PIs will support these activities by incorporating new IMs, reference data, and tests, by extending the KIM standard to support long-range electrostatic fields, Monte Carlo, and biomolecular bonded force fields, and by continuing to provide documentation, talks, workshops, and tutorials on KIM. To further the KIM mission, the PIs will address two broad and fascinating issues of critical importance to successful sequential multiscale modeling: (1) What key features does an IM need to reproduce in order to accurately model phenomenon X at a continuum scale? The project will provide tools to answer this question, by (a) developing functional forms for anisotropic materials properties to encapsulate the behavior of known defects and interfaces which are properties already identified as vital for continuum simulation of microstructure evolution, and (b) using manifold-learning methods gleaned from information geometry theory, which applies the techniques of differential geometry to the field of probability theory, to find empirical heuristics or rules that provide insight into the higher scale behavior of a class of IMs, and insight on the real world. (2) How reliable will a given IM be for a given application X? The PIs will address this component of uncertainty quantification, also called IM transferability, by (a) using machine-learning techniques to identify key interatomic configurations which strongly correlate with important continuum scale materials properties and using statistical methods to estimate IM uncertainties for these configurations, and (b) using the large uncertainties in IM fitted parameters to provide Bayesian information geometry estimates for the systematic errors in IM predictions.
非技术摘要这一奖项支持OpenKim,该奖项基于牛顿法律的计算机模拟来支持研究人员社区,以攻击材料科学,化学,工程和物理问题,从而实现新材料,新设备的设计,对生物化学过程的理解等等。 原子模拟在现实的科学,工程和工业应用中起着关键作用。这些模拟越来越多地使用拟合的原子质模型(IMS),数学处方,这些处方描述了作用在原子相互作用时作用的力,预测材料的特性,它们对外部应力的响应方式以及设计创新的纳米结构,而创新的纳米结构,原子的微小结构比人毛小约100,000倍。过去,这种原子模拟的潜力受到了几个因素的限制:(1)缺乏标准化的应用程序界面,使得很难将IM从一个仿真程序转移到另一个模拟程序; (2)缺乏用于存储和交换IMS计算机实现的精心策划的电子存储库,因此很难再现已发表的结果; (3)缺乏比较IMS准确性的工具,因此很难对新应用程序充满信心地使用IMS。这些限制已通过创建开放知识库(OpenKim)的开放知识库(OpenKim),这是一个合作的在线材料项目,以合理化,标准化和表征IMS。该奖项支持OpenKim,因为它以重要的方式进行,这将促进从不断发展的电子电路到飞机制造的领域的科学和工程进步。它将对竞争对手IMS和仿真方法进行敏锐的评估和比较,从而使计算研究人员能够迅速探索替代已发布的IMS或开发和验证新的IMS。它还将促进科学模拟中结果的复制。该项目将扩展OpenKim,以将计算化学和分子生物学群落吸引到这项材料中,从而促进两个具有共同目标和兴趣的社区之间的交流,但迄今为止由语言,单位和计算惯例分开。该小组中的学生和职位有机会与一个跨学科的科学家和工程师组成的国际跨学科小组在挑战性的科学问题的横截面上进行,例如缺陷在确定材料的特性以及不满意的化学债券在电子设备操作中的作用。通过降低进入计算材料科学的障碍,OpenKim正在促进代表性不足的群体以及发展中国家进入该技术和科学上的中央领域的群体。技术摘要奖支持OpenKim,这是一个合作的在线材料项目,以合理化,标准化,标准化和表征跨材料的合理化,标准化和表征元素的构造和构造构造的组合。该项目旨在支持,扩展和利用OpenKim进行科学。首席研究人员将将材料社区的智慧和经验与机器学习,数据挖掘和信息几何形状的高级方法融合在一起,以从根本上简化,并使材料的原子模拟领域更加严格。 OpenKim代表了回答基本科学问题的异常机会。 PIS充分访问,预计许多研究人员将使用丰富的OpenKim存储库来解决该领域的科学和方法论问题。 PI将通过将KIM标准扩展到支持远程静电场,蒙特卡洛和生物分子键合力场,并继续提供文档,谈判,工作室和tutorials在Kim上,通过扩展KIM标准来支持这些活动,以支持这些活动。为了进一步执行KIM任务,PI将解决对于成功的顺序多尺度建模至关重要的两个广泛而有趣的问题:(1)IM需要在连续规模上准确地建模现象X,需要什么关键特征? The project will provide tools to answer this question, by (a) developing functional forms for anisotropic materials properties to encapsulate the behavior of known defects and interfaces which are properties already identified as vital for continuum simulation of microstructure evolution, and (b) using manifold-learning methods gleaned from information geometry theory, which applies the techniques of differential geometry to the field of probability theory, to find empirical heuristics或规则可以洞悉一类IMS的更高规模行为以及对现实世界的见解。 (2)给定应用程序X的给定IM将如何可靠? PI将通过(a)使用机器学习技术来识别与重要的连续尺度材料属性并使用统计方法估算这些配置的不确定性,并使用这些配置的不确定性来估算较大的不确定性估算系统的估算,以估算Im for Systemian formitiation fimitian fimitian formitian formite imodie formitiation formitian formitiation compometian formitian formitiation,pis将通过(a)通过(a)使用机器学习技术来解决不确定性量化(也称为IM转移性)的这一组成部分来解决这一组成部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ellad Tadmor其他文献

Ellad Tadmor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ellad Tadmor', 18)}}的其他基金

Workshop: Mid-scale RI-EW: Knowledgebase of Mesoscale Modeling and Experimentation (KnoMME); Minneapolis, Minnesota; Fall 2022 or Spring 2023
研讨会:中尺度 RI-EW:中尺度建模和实验知识库 (KnoMME);
  • 批准号:
    2231655
  • 财政年份:
    2022
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
Data CI Pilot: CI-Based Collaborative Development of Data-Driven Interatomic Potentials for Predictive Molecular Simulations
数据 CI 试点:基于 CI 的数据驱动原子间势的协作开发,用于预测分子模拟
  • 批准号:
    2039575
  • 财政年份:
    2020
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Cyberloop for Accelerated Bionanomaterials Design
合作研究:框架:加速生物纳米材料设计的 Cyber​​loop
  • 批准号:
    1931304
  • 财政年份:
    2019
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)
协作研究:基于原子间模型知识库(KIM)的可靠材料模拟
  • 批准号:
    1834251
  • 财政年份:
    2018
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Bridging the gap between atomistic simulations and fracture mechanics
NSF/DMR-BSF:弥合原子模拟和断裂力学之间的差距
  • 批准号:
    1607670
  • 财政年份:
    2016
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accelerated Large-Scale Simulation Study of Atomic-Scale Wear Using Hyper-Quasicontinum
合作研究:使用超准连续加速原子尺度磨损的大规模模拟研究
  • 批准号:
    1462807
  • 财政年份:
    2015
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
Support for Rise of Data in Materials Research Workshop; University of Maryland; June 29-30, 2015
支持材料研究研讨会中数据的兴起;
  • 批准号:
    1542923
  • 财政年份:
    2015
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
Collaborative Research:CDI-Type II: The Knowledge-Base of Interatomic Models (KIM)
合作研究:CDI-Type II:原子间模型知识库(KIM)
  • 批准号:
    0941493
  • 财政年份:
    2009
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
  • 批准号:
    2309102
  • 财政年份:
    2023
  • 资助金额:
    $ 99.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了