AF: Small: Faster and Better Algorithms for, and via, Mathematical Programming Relaxations

AF:小:更快更好的算法,并通过数学编程松弛

基本信息

项目摘要

Optimization algorithms underpin fundamental advances in computer science, engineering and social sciences. As an example, the spectacular success of machine learning in the recent past is partly due to the important role of a class of continuous-optimization algorithms. In another direction there have been a number of breakthrough advances on fundamental and widely applicable problems for graphs and networks, such as the maximum-flow and minimum-cut problems, based on fruitful interactions between continuous optimization and discrete optimization. Increasing data-set sizes and new models of computation require further advances in optimization algorithms to reap the rewards of the data revolution. This proposal aims to develop faster approximation algorithms for a class of continuous-optimization problems and to leverage these algorithms to obtain faster approximation algorithms for several well-studied and applicable problems in discrete and combinatorial optimization. The project will support and train one PhD student in the design and analysis of algorithms at the University of Illinois at Urbana-Champaign. The investigator plans to write a survey on recent developments on fast approximation schemes for positive linear programming with an emphasis on applications to implicit programs that arise in combinatorial optimization. The investigator will continue to develop and teach a course on algorithms for big data at the University of Illinois and lecture notes and related material will be made publicly available.The technical focus of the project is to develop fast approximation algorithms via mathematical-programming relaxations for a number of fundamental problems in discrete optimization. This involves developing fast algorithms for solving the relaxation as well as fast algorithms for rounding. The interplay between discrete and continuous methods will be an important technical viewpoint. The project will have two thrusts. The first is to develop fast algorithms for solving positive linear programs and several concrete applications. A particular focus will be on implicit linear programs that arise in combinatorial optimization. The second thrust will be fast algorithms for the traveling salesperson problem (TSP) and related problems in both undirected and directed graphs. Applications to submodular objective functions will also be considered.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
优化算法支撑着计算机科学、工程和社会科学的基本进步。例如,机器学习近年来取得的巨大成功部分归功于一类连续优化算法的重要作用。在另一个方向上,基于连续优化和离散优化之间富有成效的相互作用,在图和网络的基本和广泛应用的问题上取得了许多突破性进展,例如最大流和最小割问题。不断增加的数据集规模和新的计算模型需要优化算法的进一步进步,才能获得数据革命的回报。该提案旨在为一类连续优化问题开发更快的近似算法,并利用这些算法为离散和组合优化中几个经过充分研究和应用的问题获得更快的近似算法。该项目将支持和培训伊利诺伊大学厄巴纳-香槟分校的一名博士生进行算法设计和分析。研究人员计划就正线性规划快速逼近方案的最新进展撰写一份调查报告,重点关注组合优化中出现的隐式规划的应用。研究人员将继续在伊利诺伊大学开发和教授大数据算法课程,讲义和相关材料将公开。该项目的技术重点是通过数学编程松弛来开发快速逼近算法离散优化中的一些基本问题。这涉及开发用于解决松弛问题的快速算法以及用于舍入的快速算法。离散方法和连续方法之间的相互作用将是一个重要的技术观点。 该项目将有两个重点。 首先是开发用于求解正线性规划的快速算法和一些具体应用。特别关注组合优化中出现的隐式线性程序。第二个重点是针对旅行推销员问题(TSP)以及无向和有向图中的相关问题的快速算法。还将考虑子模块目标函数的应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Faster and Scalable Algorithms for Densest Subgraph and Decomposition
用于最密集子图和分解的更快且可扩展的算法
  • DOI:
    10.1055/s-0031-1289613
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elfarouk Harb;Kent Quanrud;C. Chekuri
  • 通讯作者:
    C. Chekuri
Revisiting Priority k-Center: Fairness and Outliers
重新审视优先 k-中心:公平性和异常值
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bajpai, Tanvi;Chakrabarty, Deeparnab;Chekuri, Chandra;Negahbani, Maryam
  • 通讯作者:
    Negahbani, Maryam
Independent Sets in Elimination Graphs with a Submodular Objective
具有子模目标的消除图中的独立集
  • DOI:
    10.48550/arxiv.2307.02022
  • 发表时间:
    2023-07-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Chekuri;Kent Quanrud
  • 通讯作者:
    Kent Quanrud
Faster Algorithms for Rooted Connectivity in Directed Graphs
有向图中有根连接的更快算法
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chekuri; Chandra and
  • 通讯作者:
    Chandra and
Fast Approximation Algorithms for Bounded Degree and Crossing Spanning Tree Problems
有界度和交叉生成树问题的快速逼近算法
  • DOI:
    10.4230/lipics.approx/random.2021.24
  • 发表时间:
    2020-11-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Chekuri;Kent Quanrud;Manuel R. Torres
  • 通讯作者:
    Manuel R. Torres
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chandra Chekuri其他文献

Approximation algorithms for scheduling problems
调度问题的近似算法
  • DOI:
    10.1016/0963-9969(94)90152-x
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Chandra Chekuri
  • 通讯作者:
    Chandra Chekuri
Contention Resolution for the ℓ-fold union of a matroid via the correlation gap
通过相关间隙解决拟阵 ℓ 重并的竞争
Embedding k-Outerplanar Graphs into l 1
将 k 外平面图嵌入到 l 1 中
  • DOI:
    10.1137/s0895480102417379
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chandra Chekuri;Anupam Gupta;Ilan Newman;Yuri Rabinovich;Alistair Sinclair
  • 通讯作者:
    Alistair Sinclair
Approximation algorithms and the hardness of approximation
近似算法和近似的难度
  • DOI:
    10.1007/s10107-014-0835-4
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chandra Chekuri
  • 通讯作者:
    Chandra Chekuri
Background on Probability
概率背景
  • DOI:
    10.1017/cbo9780511790492.012
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chandra Chekuri
  • 通讯作者:
    Chandra Chekuri

Chandra Chekuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chandra Chekuri', 18)}}的其他基金

AF: Small: Optimizing with Submodular Set Functions: Algorithms, Integrality Gaps and Structural Results
AF:小:使用子模集函数进行优化:算法、完整性差距和结构结果
  • 批准号:
    1526799
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Flows, Cuts, Treewidth and Algorithms for Routing, Network Design and Related Problems
AF:小:流、割、树宽和路由算法、网络设计及相关问题
  • 批准号:
    1319376
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Approximation Algorithms for Graph and Combinatorial Optimization Problems
AF:小:图和组合优化问题的近似算法
  • 批准号:
    1016684
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Approximation Algorithms for Routing and Network Design
路由和网络设计的近似算法
  • 批准号:
    0728782
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS-NBD Collaborative Research: Coding and Transmission Schemes for Content Download
NeTS-NBD 合作研究:内容下载的编码和传输方案
  • 批准号:
    0721899
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: AF: Small: Algorithms and a Code Generator for Faster Stencil Computations
SHF:AF:Small:用于更快模板计算的算法和代码生成器
  • 批准号:
    2318633
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2307106
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2307106
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Shortest Paths and Distance Parameters: Faster, Fault-Tolerant and More Accurate
AF:小:最短路径和距离参数:更快、容错且更准确
  • 批准号:
    2129139
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了