CIF: Small: ESTRELLA: Exploiting Structure in Tensors for Representation, Estimation, and Limits of Learning Algorithms
CIF:小:ESTRELLA:利用张量结构进行表示、估计和学习算法的限制
基本信息
- 批准号:1910110
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tensors are multidimensional mathematical objects that generalize vectors (one dimensional) and matrices (two dimensional) to higher dimensions. Tensors, which can be written as multiway arrays, are ubiquitous in applications involving complex-structured data. The data themselves may be tensor-valued in some applications: for example, a grayscale video is a three-dimensional tensor with two spatial dimensions (horizontal and vertical) and one temporal dimension. Tensors can also be used in other applications to represent higher-order correlations between statistical variables; as an example, correlations among all triplets of variables correspond to a three-dimensional tensor. Although tensors have been used for decades in a variety of disciplines, statistical and signal processing methods using structured models for tensor data are less mature than their vector and matrix counterparts. This has immediate consequences for data science practitioners: they lack a theoretical framework for choosing a good model when working with tensor data. This project pursues a comprehensive theory for tensor data by focusing on a family of structured statistical models in which the number of parameters can be controlled in a principled manner. In particular, the project reaps the benefits of structured modeling of tensor data by quantifying the number of data samples needed to obtain a given parametrized structured tensor model and developing efficient algorithms for estimating the associated parameters. In the process, the project seeks also to simplify the measurement, storage, and statistical modeling of tensor-structured data. The outcomes of this project should impact many areas in which tensor data are being used, such as medical imaging, climate science, machine learning, computer vision, text and speech processing, and radar systems. Because of the wide-ranging uses of tensor data, this project also facilitates interactions between multiple research communities from statistics, engineering, and basic sciences.The project draws on the tight connection between tensor decompositions and structured matrix models in order to formulate the estimation of structured tensor models as nonconvex optimization problems over highly structured spaces of matrices. The work focuses on developing a fundamental understanding of structured models for tensor data along three research tracks: understanding the geometry of the resulting nonconvex problems, developing computationally efficient algorithms for solving the optimization problems, and quantifying the number of samples required to estimate the parameters within the structured model in a minimax sense. The first track develops a mathematical understanding of the nonconvex optimization problems that arise when using structured models for tensor data. These will inform the design strategies for effectively identifying a good structured model that fits the data. The second track entails the design of numerical methods and algorithms that implement these strategies to efficiently find models that best describe the tensor-valued data. The third and final track characterizes the fundamental limits of the proposed models and their relationship to the metrics of representation, reconstruction, and prediction errors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
张量是将向量(一维)和矩阵(二维)推广到更高维度的多维数学对象。张量可以写成多路数组,在涉及复杂结构数据的应用中无处不在。在某些应用中,数据本身可能是张量值的:例如,灰度视频是具有两个空间维度(水平和垂直)和一个时间维度的三维张量。张量还可以在其他应用中用于表示统计变量之间的高阶相关性;例如,所有变量三元组之间的相关性对应于三维张量。尽管张量已在各个学科中使用了数十年,但使用张量数据结构化模型的统计和信号处理方法不如向量和矩阵对应方法成熟。这对数据科学从业者产生了直接影响:他们在处理张量数据时缺乏选择良好模型的理论框架。该项目通过关注一系列结构化统计模型来追求张量数据的综合理论,其中参数的数量可以以原则性的方式控制。特别是,该项目通过量化获得给定参数化结构化张量模型所需的数据样本数量并开发用于估计相关参数的有效算法,获得了张量数据结构化建模的好处。在此过程中,该项目还寻求简化张量结构数据的测量、存储和统计建模。该项目的成果应该会影响使用张量数据的许多领域,例如医学成像、气候科学、机器学习、计算机视觉、文本和语音处理以及雷达系统。由于张量数据的广泛用途,该项目还促进了统计、工程和基础科学等多个研究团体之间的互动。该项目利用张量分解和结构化矩阵模型之间的紧密联系,以制定对结构化张量模型作为高度结构化矩阵空间上的非凸优化问题。这项工作的重点是沿着三个研究方向发展对张量数据结构化模型的基本理解:理解由此产生的非凸问题的几何形状,开发计算有效的算法来解决优化问题,以及量化估计参数所需的样本数量。极小极大意义上的结构化模型。第一个轨道发展对使用张量数据的结构化模型时出现的非凸优化问题的数学理解。这些将为有效识别适合数据的良好结构化模型的设计策略提供信息。第二条路线需要设计数值方法和算法来实现这些策略,以有效地找到最能描述张量值数据的模型。第三个也是最后一个轨道描述了所提出模型的基本限制及其与表示、重建和预测误差指标的关系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的评估进行评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Mixtures of Separable Dictionaries for Tensor Data: Analysis and Algorithms
张量数据的可分离字典的学习混合:分析和算法
- DOI:10.1109/tsp.2019.2952046
- 发表时间:2019-03-22
- 期刊:
- 影响因子:5.4
- 作者:Mohsen Ghassemi;Z. Shakeri;A. Sarwate;W. Bajwa
- 通讯作者:W. Bajwa
Structured Low-Rank Tensors for Generalized Linear Models
广义线性模型的结构化低阶张量
- DOI:10.48550/arxiv.2308.02922
- 发表时间:2023-08-05
- 期刊:
- 影响因子:0
- 作者:Batoul Taki;A. Sarwate;W. Bajwa
- 通讯作者:W. Bajwa
Learning Predictors from Multidimensional Data with Tensor Factorizations
使用张量分解从多维数据中学习预测器
- DOI:10.14713/arestyrurj.v1i3.165
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Kwon, Soo Min;Sarwate, Anand D.
- 通讯作者:Sarwate, Anand D.
A Minimax Lower Bound for Low-Rank Matrix-Variate Logistic Regression
低秩矩阵变量逻辑回归的极小极大下界
- DOI:10.1109/ieeeconf53345.2021.9723149
- 发表时间:2021-05-31
- 期刊:
- 影响因子:0
- 作者:Batoul Taki;Mohsen Ghassemi;A. Sarwate;W. Bajwa
- 通讯作者:W. Bajwa
Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
使用低秩和稀疏塔克分解的张量回归
- DOI:10.1137/19m1299335
- 发表时间:2020-01
- 期刊:
- 影响因子:3.6
- 作者:Ahmed, Talal;Raja, Haroon;Bajwa, Waheed U.
- 通讯作者:Bajwa, Waheed U.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anand Sarwate其他文献
Ieee Information Theory Society Newsletter President's Column from the Editor Ieee Information Theory Society Newsletter the Historian's Column
IEEE 信息论学会通讯 主席编辑专栏 IEEE 信息论学会通讯 历史学家专栏
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Meir Feder;Tracey Ho;Joerg Kliewer;Anand Sarwate;Andy Singer - 通讯作者:
Andy Singer
Ieee Information Theory Society Newsletter President's Column from the Editor It Society Member Honored Scholar One Website for Ieee Transactions on Information Theory Has Gone Live Throughput and Capacity Regions Coding for Noisy Networks
Ieee 信息论协会通讯 编辑主席专栏 It 协会会员 荣誉学者 IEEE 信息论交易网站已上线 吞吐量和容量 噪声网络区域编码
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Helmut Bölcskei;Giuseppe Caire;Meir Feder;Joerg Kliewer;Anand Sarwate;Andy Singer;Dave Forney;S. Shamai;Alexander Vardy;Sergio Verdú;F. Kschischang;Tracey Ho;Norman C Beaulieu;Icore Research Chair;Anthony Ephremides;A. E. Gamal - 通讯作者:
A. E. Gamal
Anand Sarwate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anand Sarwate', 18)}}的其他基金
RINGS: REALTIME: Resilient Edge-cloud Autonomous Learning with Timely Inferences
RINGS:实时:具有及时推理能力的弹性边缘云自主学习
- 批准号:
2148104 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Between Shannon and Hamming
CIF:小:香农和汉明之间的合作研究
- 批准号:
1909468 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TWC: Small: PERMIT: Privacy-Enabled Resource Management for IoT Networks
TWC:小型:PERMIT:物联网网络的启用隐私的资源管理
- 批准号:
1617849 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Privacy-preserving learning for distributed data
职业:分布式数据的隐私保护学习
- 批准号:
1453432 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
- 批准号:
1440033 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
- 批准号:
1218331 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
- 批准号:82371229
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
- 批准号:82301369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
- 批准号:82303616
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
- 批准号:
EP/Z000572/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Designing, simulating, fabricating, and characterising small-pitch LGAD sensors with precise timing
设计、模拟、制造和表征具有精确定时的小间距 LGAD 传感器
- 批准号:
ST/X005194/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Training Grant
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
- 批准号:
MR/Y014634/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Optimisation of small molecule inhibitors for effective targeting of phospholipase C gamma in T-cell lymphoma
优化小分子抑制剂以有效靶向 T 细胞淋巴瘤中的磷脂酶 C γ
- 批准号:
MR/Y503344/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant