RINGS: REALTIME: Resilient Edge-cloud Autonomous Learning with Timely Inferences
RINGS:实时:具有及时推理能力的弹性边缘云自主学习
基本信息
- 批准号:2148104
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) is the enabler of emerging real-time applications ranging from augmented reality and smart cities to autonomous vehicles that are changing how people live and work. Low latency is essential for these services; emerging real-time applications will typically need assistance from a mobile edge cloud (MEC) for real-time operation. This emerging scenario introduces significant new challenges: mobile devices are heterogeneous, ranging from energy-harvesting sensors to automobiles, but storage and compute resources are generally limited and communication is often over low-bandwidth channels; real-time deployment of trained ML models requires autonomous computation and decision-making that is adaptive to heterogeneous time-varying local environments; devices need to make high-accuracy inferences on high-dimensional data in real time; devices continuously gather new data that must be processed, aggregated, and communicated to the MEC; mobile users have heterogenous privacy preferences that require privacy-sensitive use of the MEC; and the applications and services on the mobile devices must be resilient to changes in both the cyber and physical worlds in order to ensure personal safety. This project is aimed at the design and experimental validation of an MEC-based distributed ML system that accounts for these factors.In this setting of real-time operation, online decision-making, and offline training of ML-based applications that must be resilient to data, application, user, and system changes, this research program has four facets: (1) Edge-centric distributed ML models to enable both real-time inferences at mobile devices and fast distributed semi-supervised training are being developed and evaluated. (2) Based on age-of-information timeliness metrics, real-time inference methods and system operation are optimized to balance mobile computation against network resources. (3) Differential privacy and other privacy metrics for real-time and online operation of MEC-assisted ML are being developed and incorporated in the distributed algorithms for system adaptation. (4) The project integrates these design approaches in a proof-of-concept prototype on the NSF COSMOS testbed in NY City to validate feasibility and evaluate device and system resilience for representative applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习 (ML) 是新兴实时应用的推动者,从增强现实和智能城市到自动驾驶汽车,这些应用正在改变人们的生活和工作方式。 低延迟对于这些服务至关重要;新兴的实时应用程序通常需要移动边缘云 (MEC) 的帮助才能实现实时操作。这种新兴场景带来了重大的新挑战:移动设备是异构的,从能量收集传感器到汽车,但存储和计算资源通常有限,并且通常通过低带宽信道进行通信; 实时部署经过训练的机器学习模型需要自主计算和决策,以适应异构时变本地环境;设备需要实时对高维数据进行高精度推断;设备不断收集必须处理、聚合并传送给 MEC 的新数据;移动用户具有异构的隐私偏好,需要对 MEC 进行隐私敏感的使用;移动设备上的应用程序和服务必须能够适应网络和物理世界的变化,以确保人身安全。 该项目旨在设计和实验验证基于 MEC 的分布式 ML 系统,该系统考虑了这些因素。在这种基于 ML 的应用程序的实时操作、在线决策和离线训练的设置中,必须具有弹性针对数据、应用程序、用户和系统的变化,该研究计划有四个方面:(1)正在开发和评估以边缘为中心的分布式机器学习模型,以实现移动设备上的实时推理和快速分布式半监督训练。 (2)基于信息时代的及时性指标,优化实时推理方法和系统操作,以平衡移动计算与网络资源。 (3) 正在开发用于 MEC 辅助机器学习实时在线操作的差分隐私和其他隐私指标,并将其纳入分布式算法中以进行系统适配。 (4) 该项目将这些设计方法集成到纽约市 NSF COSMOS 测试台上的概念验证原型中,以验证可行性并评估代表性应用的设备和系统弹性。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis
FAST-PCA:一种快速准确的分布式主成分分析算法
- DOI:10.1109/tsp.2022.3229635
- 发表时间:2022-01
- 期刊:
- 影响因子:5.4
- 作者:Gang, Arpita;Bajwa, Waheed U.
- 通讯作者:Bajwa, Waheed U.
C-DIEGO: An Algorithm with Near-Optimal Sample Complexity for Distributed, Streaming PCA
C-DIEGO:一种具有近乎最优样本复杂度的分布式流式 PCA 算法
- DOI:10.1109/ciss56502.2023.10089668
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Zulqarnain, Muhammad;Gang, Arpita;Bajwa, Waheed U.
- 通讯作者:Bajwa, Waheed U.
Exit Time Analysis for Approximations of Gradient Descent Trajectories Around Saddle Points
鞍点周围梯度下降轨迹近似的退出时间分析
- DOI:10.1093/imaiai/iaac025
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Dixit, Rishabh;Gürbüzbalaban, Mert;Bajwa, Waheed U
- 通讯作者:Bajwa, Waheed U
Privacy Leakage in Discrete-Time Updating Systems
离散时间更新系统中的隐私泄露
- DOI:10.1109/isit50566.2022.9834673
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Sathyavageeswaran, Nitya;Yates, Roy D.;Sarwate, Anand D.;Mandayam, Narayan
- 通讯作者:Mandayam, Narayan
Distributed stochastic algorithms for high-rate streaming principal component analysis
用于高速流主成分分析的分布式随机算法
- DOI:
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Raja, Haroon;Bajwa, Waheed U.
- 通讯作者:Bajwa, Waheed U.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anand Sarwate其他文献
Ieee Information Theory Society Newsletter President's Column from the Editor Ieee Information Theory Society Newsletter the Historian's Column
IEEE 信息论学会通讯 主席编辑专栏 IEEE 信息论学会通讯 历史学家专栏
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Meir Feder;Tracey Ho;Joerg Kliewer;Anand Sarwate;Andy Singer - 通讯作者:
Andy Singer
Ieee Information Theory Society Newsletter President's Column from the Editor It Society Member Honored Scholar One Website for Ieee Transactions on Information Theory Has Gone Live Throughput and Capacity Regions Coding for Noisy Networks
Ieee 信息论协会通讯 编辑主席专栏 It 协会会员 荣誉学者 IEEE 信息论交易网站已上线 吞吐量和容量 噪声网络区域编码
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Helmut Bölcskei;Giuseppe Caire;Meir Feder;Joerg Kliewer;Anand Sarwate;Andy Singer;Dave Forney;S. Shamai;Alexander Vardy;Sergio Verdú;F. Kschischang;Tracey Ho;Norman C Beaulieu;Icore Research Chair;Anthony Ephremides;A. E. Gamal - 通讯作者:
A. E. Gamal
Anand Sarwate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anand Sarwate', 18)}}的其他基金
CIF: Small: Collaborative Research: Between Shannon and Hamming
CIF:小:香农和汉明之间的合作研究
- 批准号:
1909468 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CIF: Small: ESTRELLA: Exploiting Structure in Tensors for Representation, Estimation, and Limits of Learning Algorithms
CIF:小:ESTRELLA:利用张量结构进行表示、估计和学习算法的限制
- 批准号:
1910110 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
TWC: Small: PERMIT: Privacy-Enabled Resource Management for IoT Networks
TWC:小型:PERMIT:物联网网络的启用隐私的资源管理
- 批准号:
1617849 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Privacy-preserving learning for distributed data
职业:分布式数据的隐私保护学习
- 批准号:
1453432 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
- 批准号:
1440033 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
- 批准号:
1218331 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
基于纸基微流控芯片的食源性疾病致病因子即时检测技术研究
- 批准号:22304022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
即时零售背景下的供应链定价与协调机制研究
- 批准号:72301280
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米催化气泡式微流控数字免疫分析法在细胞因子高灵敏即时检测中的研究
- 批准号:22304122
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可视化集成式微流控生物传感器用于柑橘黄龙病现场即时诊断的研究
- 批准号:32301683
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向O2O模式的美团外卖即时配送调度方法
- 批准号:52305523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: Ideas Lab: Smarter Microbial Observatories for Realtime ExperimentS (SMORES)
合作研究:创意实验室:用于实时实验的智能微生物观测站 (SMORES)
- 批准号:
2321652 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
I-Corps: Artificial Intelligence Driven Prediction, Monitoring, and Management of Unwanted Behavior in Patients with Autism: Realtime, Smart, Automated, and Personalized
I-Corps:人工智能驱动的自闭症患者不良行为的预测、监测和管理:实时、智能、自动化和个性化
- 批准号:
2344599 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Smarter Microbial Observatories for Realtime ExperimentS (SMORES)
合作研究:创意实验室:用于实时实验的智能微生物观测站 (SMORES)
- 批准号:
2321651 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant