SBIR Phase II: An adaptive machine learning-based platform to improve surgical quality and patient outcomes

SBIR II 期:基于自适应机器学习的平台,可提高手术质量和患者治疗效果

基本信息

  • 批准号:
    1926924
  • 负责人:
  • 金额:
    $ 69.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will be to help usher in personalized and tailored surgical care within a shifting healthcare context toward value-based care. Hospitals and surgeons are seeking solutions that will enable them to target, as opposed to generalizing, improvements in surgical quality for enhanced patient outcomes and effective use of resources. By proactively identifying surgical risks and matching patients to interventions most appropriate for these risk strata, the proposed technology is designed to support hospitals in meeting their value-based care objectives. The larger vision is to apply this paradigm in all of medicine by leveraging Artificial Intelligence and Machine Learning for prediction, proactive intervention, and outcomes tracking in a closed feedback loop. Demonstrating this in a high-cost, high-risk specialty like surgery provides a path for expanding the technology into other medical specialties and serving a greater domestic and international market. Ultimately, the lessons learned from the wide-spread use of this technology will allow society to derive key kernels of knowledge in applied data science, preventative medicine, and technical scalability of hospital enterprise solutions. This project is an interdisciplinary representation of crucial activities needed to drive the tipping point of medical technology. This Small Business Innovation Research (SBIR) Phase II project builds upon the results of Phase I, which included predictive engine development, scalable data processing pipeline development, and hospital stakeholder engagement activities. Phase II efforts focus on further developing the technology to facilitate its commercial use and integration in clinical settings. Key objectives for the Phase II project are as follows: (1) development of an Application Programming Interface (API) to deliver tailored machine learning models to broad users across varying needs, (2) expansion of a clinical intervention library supported by clinical evidence across multiple surgical specialties, and (3) development of an outcomes dashboard to display postoperative patient outcomes from automated extraction of electronic health records. The result of this project will be a closed-loop clinical and technical infrastructure that is agile to the needs of a diverse range of surgical customers to enable quality improvement across an entire surgical ecosystem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小型企业创新研究(SBIR)第二阶段项目的更广泛的影响/商业潜力将是在转变的医疗保健环境中向基于价值的护理转移的个性化和量身定制的手术护理。医院和外科医生正在寻求解决方案,使他们能够针对手术质量的改善,以提高患者预后和有效利用资源。通过主动识别手术风险并将患者与最适合这些风险层的干预措施相匹配,该技术旨在支持医院实现其基于价值的护理目标。更大的愿景是通过利用人工智能和机器学习来预测,主动干预以及在封闭的反馈循环中跟踪结果,将此范式应用于所有医学中。在高成本的高风险专业(例如手术)中证明这一点为将技术扩展到其他医学专业并为更大的国内和国际市场提供服务提供了途径。最终,从该技术的广泛使用中学到的经验教训将使社会能够在应用数据科学,预防医学和医院企业解决方案的技术可扩展性方面得出重要的知识知识。该项目是推动医疗技术临界点所需的关键活动的跨学科代表。这项小型企业创新研究(SBIR)II期项目基于第一阶段的结果,其中包括预测性引擎开发,可扩展的数据处理管道开发以及医院利益相关者的参与活动。第二阶段的工作着重于进一步开发该技术,以促进其在临床环境中的商业用途和集成。第二阶段项目的关键目标如下:(1)开发应用程序编程接口(API),以向跨不同需求的广泛用户提供量身定制的机器学习模型,(2)扩展临床干预库,并在跨越临床证据支持的临床干预库中多个手术专业和(3)开发结果仪表板,以显示电子健康记录自动提取的术后患者结果。该项目的结果将是一个闭环临床和技术基础设施,它敏捷了各种各样的手术客户的需求,以在整个手术生态系统中进行质量改进。这一奖项反映了NSF的法定任务,并被认为值得。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bora Chang其他文献

Deep Learning-Based Risk Model for Best Management of Closed Groin Incisions After Vascular Surgery.
基于深度学习的风险模型,用于血管手术后腹股沟闭合切口的最佳管理。
  • DOI:
    10.1016/j.jss.2020.02.012
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bora Chang;Zhifei Sun;P. Peiris;Erich Huang;E. Benrashid;E. Dillavou
  • 通讯作者:
    E. Dillavou
A Risk-Prediction Platform for Acute Kidney Injury and 30-Day Readmission After Colorectal Surgery.
急性肾损伤和结直肠手术后 30 天再入院的风险预测平台。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    J. Nellis;Zhifei Sun;Bora Chang;G. Della Porta;C. Mantyh
  • 通讯作者:
    C. Mantyh

Bora Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bora Chang', 18)}}的其他基金

STTR Phase I: Development of a Machine Learning Platform to Predict Surgical Complications
STTR 第一阶段:开发机器学习平台来预测手术并发症
  • 批准号:
    1721737
  • 财政年份:
    2017
  • 资助金额:
    $ 69.39万
  • 项目类别:
    Standard Grant

相似国自然基金

热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
  • 批准号:
    32360917
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
PPP项目跨阶段监管机制研究
  • 批准号:
    72301115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
  • 批准号:
    52300219
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
  • 批准号:
    42371164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
  • 批准号:
    52308142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
  • 批准号:
    2335175
  • 财政年份:
    2024
  • 资助金额:
    $ 69.39万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
  • 批准号:
    2335265
  • 财政年份:
    2024
  • 资助金额:
    $ 69.39万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: FlashPCB Service Commercialization and AI Component Package Identification
SBIR第二阶段:FlashPCB服务商业化和AI组件封装识别
  • 批准号:
    2335464
  • 财政年份:
    2024
  • 资助金额:
    $ 69.39万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 69.39万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 69.39万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了