RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas

RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计

基本信息

  • 批准号:
    1926578
  • 负责人:
  • 金额:
    $ 63.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

In this project, a set of tools will be built for in-depth analysis of survey data, making use of and extending statistical methods for estimation for small subgroups. Classical methods for surveys are focused on aggregate population-level estimates but we can learn much more using small-area estimation. The goal of this project is to build a user-accessible platform for modeling and visualizing survey data that would give estimates for arbitrary subgroups of the population, along with visualization tools to display estimates of interest. The model would be fit in Stan, a state-of-the-art open-source platform for Bayesian inference, and implemented for the Cooperative Congressional Election Survey (CCES). An example of the sort of analysis that could be performed using these methods is a study of how demographic gaps in voting vary by age, education, and state.The statistical method of multilevel regression and poststratification (MRP) allows inferences for narrow slices of the population. In the terminology of survey methods, MRP is "model-based" in that it uses regression to do partial pooling (smoothing) for small areas and demographic slices, and it is "design-based" in adjusting for variables such as age, sex, ethnicity, and education that are predictive of inclusion in the sample. One reason for extracting inferences for population subgroups using a flexible tool rather than one-time analyses is that key variables can change over time. Multilevel modeling gives the flexibility to adjust for large numbers of predictors, which makes poststratification more effective. As a bonus, this modeling and adjustment enables extraction of estimates of average survey responses for small slices of the population, which can correspond to the very sorts of inferences that consumers particularly want, and which typically are unavailable from surveys without huge sample sizes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在该项目中,将构建一组工具,以深入分析调查数据,利用并扩展统计方法以估算小型子组。 调查的经典方法集中于总人群级估计,但使用小区域估计,我们可以学到更多。 该项目的目的是构建一个可访问用户的平台,用于建模和可视化调查数据,以允许对人群的任意亚组进行估算,并提供可视化工具以显示感兴趣的估计值。 该模型将适合Stan,这是贝叶斯推论的最先进的开源平台,并为合作国会选举调查(CCES)实施。 可以使用这些方法进行的分析的一个例子是研究投票差距如何因年龄,教育和状态而变化。多层次回归和延伸后(MRP)的统计方法允许推断人口狭窄的片段。 在调查方法的术语中,MRP是“基于模型的”,因为它使用回归来对小区域和人口切片进行部分合并(平滑),并且在调整诸如年龄,性别,族裔和教育等变量时,它是“基于设计的”,可以预测样本中包含的变量。 使用灵活的工具而不是一次性分析提取人群亚组的推断的原因之一是,关键变量可以随时间变化。 多级建模可以灵活地调整大量预测指标,这使得阶段更有效。 作为奖励,这种建模和调整能够提取少数人群的平均调查响应估计值,这可以与消费者特别想要的推论相对应,并且通常从没有样本大小的情况下无法进行调查,而没有大量的调查。该奖项反映了NSF的法定任务,并通过评估了基础的范围,并反映了对基金会的支持,并且对基金会的范围进行了评估,并反映了基金会的范围。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Swing Voter Paradox: Electoral Politics in a Nationalized Era
摇摆选民悖论:国有化时代的选举政治
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiro Kuriwaki
  • 通讯作者:
    Shiro Kuriwaki
Bayesian hierarchical weighting adjustment and survey inference
贝叶斯分层权重调整和调查推断
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Si, Yajuan;Trangucci, Rob;Gabry, Jonah;and Gelman, Andrew
  • 通讯作者:
    and Gelman, Andrew
Information, incentives, and goals in election forecasts
  • DOI:
    10.1017/s1930297500007981
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    A. Gelman;J. Hullman;Christopher Wlezien;G. E. Morris
  • 通讯作者:
    A. Gelman;J. Hullman;Christopher Wlezien;G. E. Morris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Gelman其他文献

Forming Voting Blocs and Coalitions as a Prisoner's Dilemma: A Possible Theoretical Explanation for Political Instability
Community prevalence of SARS-CoV-2 in England during April to September 2020: Results from the ONS Coronavirus Infection Survey
2020 年 4 月至 9 月英格兰 SARS-CoV-2 社区流行情况:ONS 冠状病毒感染调查结果
  • DOI:
    10.1101/2020.10.26.20219428
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Pouwels;T. House;E. Pritchard;J. Robotham;Paul J. Birrell;Andrew Gelman;K. Vihta;N. Bowers;Ian Boreham;Heledd Thomas;James W Lewis;Iain Bell;J. Bell;J. Newton;J. Farrar;I. Diamond;P. Benton;A. Walker
  • 通讯作者:
    A. Walker
Ethics and Statistics: It's Too Hard to Publish Criticisms and Obtain Data for Republication
伦理与统计学:发表批评和获取重发表数据太难了
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Gelman
  • 通讯作者:
    Andrew Gelman
An improved BISG for inferring race from surname and geolocation
一种改进的 BISG,用于根据姓氏和地理位置推断种族
  • DOI:
    10.48550/arxiv.2310.15097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Greengard;Andrew Gelman
  • 通讯作者:
    Andrew Gelman
A default prior distribution for logistic and other regression models ∗
逻辑和其他回归模型的默认先验分布 *
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Gelman;Aleks Jakulin;M. G. Pittau;Yu
  • 通讯作者:
    Yu

Andrew Gelman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Gelman', 18)}}的其他基金

Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
  • 批准号:
    2055251
  • 财政年份:
    2020
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Scalable Systems for Probabilistic Programming
协作研究:PPoSS:规划:概率编程的可扩展系统
  • 批准号:
    2029022
  • 财政年份:
    2020
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
CI-SUSTAIN: Stan for the Long Run
CI-SUSTAIN:长远发展
  • 批准号:
    1730414
  • 财政年份:
    2017
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Multilevel Regression and Poststratification: A Unified Framework for Survey Weighted Inference
协作研究:多级回归和后分层:调查加权推理的统一框架
  • 批准号:
    1534414
  • 财政年份:
    2015
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
CI-ADDO-NEW: Stan, Scalable Software for Bayesian Modeling
CI-ADDO-NEW:Stan,用于贝叶斯建模的可扩展软件
  • 批准号:
    1205516
  • 财政年份:
    2012
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
CMG: Reconstructing Climate from Tree Ring Data
CMG:从树木年轮数据重建气候
  • 批准号:
    0934516
  • 财政年份:
    2009
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
Design and Analysis of "How many X's do you know" surveys for the study of polarization in social networks
用于研究社交网络极化的“你知道多少个 X”调查的设计和分析
  • 批准号:
    0532231
  • 财政年份:
    2005
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
Multilevel Modeling for the Study of Public Opinion and Voting
用于民意和投票研究的多层次建模
  • 批准号:
    0318115
  • 财政年份:
    2003
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Estimating Congressional District-Level Opinions from National Surveys using a Bayesian Hierarchical Logistic Regression Model
博士论文研究:使用贝叶斯分层逻辑回归模型从全国调查中估计国会选区级意见
  • 批准号:
    0241709
  • 财政年份:
    2003
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
  • 批准号:
    1926424
  • 财政年份:
    2019
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
  • 批准号:
    1926601
  • 财政年份:
    2019
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
  • 批准号:
    1926481
  • 财政年份:
    2019
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
  • 批准号:
    1926528
  • 财政年份:
    2019
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
  • 批准号:
    1926402
  • 财政年份:
    2019
  • 资助金额:
    $ 63.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了