Collaborative Research: Understanding substrate limitation and Lithium and Silicon isotope fractionation during secondary clay formation in marine systems
合作研究:了解海洋系统次生粘土形成过程中的底物限制以及锂和硅同位素分馏
基本信息
- 批准号:1924585
- 负责人:
- 金额:$ 58.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A long-standing topic of investigation in the field of chemical oceanography is understanding the processes that deliver elements to, and remove them from, seawater. There has long been a "missing sink" in the global marine silicon (Si) budget in that removal to sediments did not appear to balance the inputs from rivers. Several decades ago, it was postulated that "reverse weathering" in marine sediments could be this missing sink. In this process, the weathering process that takes place on land, whereby silicon is removed from minerals and dissolved in water, would be reversed and these minerals would be reconstituted in marine sediments through the formation of clays. Evidence for this process was very difficult to obtain, and only recently have studies using advanced measurement techniques shown that the global magnitude of marine reverse weathering could account for all the missing sink term in the global Si budget. If validated, this means reverse weathering would represent the largest individual sink for marine Si identified to date, with most of this burial occurring in a relatively small area of the ocean, the land-sea interface. Moreover, the continued upward revision of the marine reverse weathering rate has implications for the sequestration of other elements (e.g. iron, aluminum) and for other coastal processes (e.g. ocean acidification, as carbon dioxide is a byproduct of the reverse weathering process). This project aims to understand the most important factors affecting how fast reverse weathering occurs, and developing new approaches to evaluate this process in the field environment. Beyond the scientific pursuits, this project will support an early career researcher, a postdoctoral investigator, a graduate student, and undergraduate interns. It will also support high school outreach through science fair participation and annual scholarships for students wishing to pursue Marine Science education. This project will develop a community outreach activity to be used annually during the Atlanta Science Festival, Georgia's biggest science fair that showcases science and technology to the public. Finally, it will build capacity for silicon isotope measurements in the U.S.In this project, the investigators propose to understand the driving factors of marine secondary clay formation and facilitate the determination of reaction degree in the field using a novel dual silicon and lithium stable isotope approach. The overarching goals are: 1) to better constrain the geochemical factors, kinetics, and mechanisms involved in secondary clay formation from diatom-produced silica (bSiO2); this will be done by conducting controlled laboratory experiments using pure mineral phases, diatom bSiO2, and artificial seawater; 2) to test the validity of the isolated geochemical factors by conducting mesocosm incubation experiments using field sediment materials, diatom bSiO2, and seawater; and 3) to experimentally determine whether laboratory-derived Li and Si isotope fractionations are valid during secondary clay formation under marine sediment conditions. This work addresses one of the eight Ocean Sciences Priorities identified in The National Research Council's 2015-2025 Decadal Survey of Ocean Sciences, specifically "How have ocean biogeochemical and physical processes contributed to today's climate and its variability, and how will this system change over the next century?" These results have fundamental importance to understanding the factors regulating marine elemental sequestration (e.g. Si, C, Fe, Al, Mg, K) and those driving global climate through oceanic CO2 evolution, a byproduct of the reverse weathering reaction, in marine sediments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化学海洋学领域的一个长期调查主题是了解将元素传递给海水并将其删除的过程。在全球海洋硅(SI)预算中,长期以来一直存在“缺失”,因为将其拆除到沉积物中似乎并没有平衡河流的投入。几十年前,据推测,海洋沉积物中的“反向风化”可能是缺失的水槽。在此过程中,将在陆地上进行的风化过程,从而将硅从矿物质中取出并溶解在水中,将被逆转,这些矿物将通过粘土的形成在海洋沉积物中重构。这一过程的证据很难获得,直到最近才使用高级测量技术进行了研究,表明全球逆向风化的全球幅度可以解释全球SI预算中所有缺失的下沉术语。如果经过验证,这意味着反向风化将代表迄今为止确定的海洋SI最大的单个水槽,大部分埋葬发生在海洋相对较小的土地界面。此外,海洋反向风化速率的持续向上修订对其他元素(例如铁,铝)和其他沿海过程(例如海洋酸化,因为二氧化碳是二氧化碳是反向面对面过程的副产品)的影响。该项目旨在了解影响风化速度发生速度的最重要因素,并开发新的方法来评估该过程在现场环境中。 除了科学追求之外,该项目还将支持早期职业研究员,博士后研究员,研究生和本科实习生。它还将通过科学博览会参与和希望接受海洋科学教育的学生的年度奖学金来支持高中宣传。该项目将开发一项社区外展活动,每年在佐治亚州最大的科学博览会上每年使用,向公众展示科学和技术。最后,它将在美国该项目中建立硅同位素测量的能力,研究人员建议了解海洋次级粘土形成的驱动因子,并促进使用新型的双硅和锂稳定的同位素方法来确定田间反应程度。总体目标是:1)更好地限制从硅藻生产的二氧化硅(BSIO2)中涉及的二级粘土形成的地球化学因素,动力学和机制(BSIO2);这将通过使用纯矿物相,硅藻BSIO2和人造海水进行受控实验室实验来完成。 2)通过使用野战沉积物材料,硅藻BSIO2和海水进行中cosm孵育实验来测试分离的地球化学因子的有效性; 3)实验确定实验室衍生的LI和SI同位素分馏在海洋沉积物条件下在二次粘土形成期间是否有效。 这项工作介绍了国家研究委员会2015 - 2025年对海洋科学的十年级调查中确定的八项海洋科学重点之一,特别是“海洋生物地球化学和物理过程如何有助于当今的气候及其变化,以及该系统在下一世纪将如何变化?”这些结果对于理解调节海洋元素隔离的因素(例如Si,C,Fe,Al,Mg,K)以及那些通过Oceanic CO2 Evolution(反向风化反应的副产品)在Marine Sediments中的副产品,这是NSF奖励的范围,这反映了NSF的法定任务和宽广的支持,这反映了NSF的法规及其范围的支持,这是基本的重要性。 标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial Variability of Sediment Amorphous Silica and its Reactivity in a Northern Gulf of Mexico Estuary and Coastal Zone
- DOI:10.18785/gcr.3201.14
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Elliot Kemp;Ryan Roseburrough;E. Elliott;J. Krause
- 通讯作者:Elliot Kemp;Ryan Roseburrough;E. Elliott;J. Krause
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Krause其他文献
Jeffrey Krause的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Krause', 18)}}的其他基金
Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
- 批准号:
2319429 - 财政年份:2024
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Extreme disturbances/perturbations to coastal deposition systems
合作研究:RAPID:对沿海沉积系统的极端干扰/扰动
- 批准号:
2205278 - 财政年份:2021
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
RII Track-4: Peering into Nature's Glass Boxes - using nano-Raman Spectroscopy to answer Novel Questions in Diatom-focused Environmental Research
RII Track-4:窥探大自然的玻璃盒 - 使用纳米拉曼光谱回答以硅藻为重点的环境研究中的新问题
- 批准号:
1833053 - 财政年份:2018
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
The biotic and abiotic controls on the Silicon cycle in the northern Gulf of Mexico
墨西哥湾北部硅循环的生物和非生物控制
- 批准号:
1558957 - 财政年份:2016
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: What Controls the Transfer of Diatom Organic Matter to age-0 Pollock Prey in the Bering Sea Ecosystem?
合作研究:是什么控制着白令海生态系统中硅藻有机物向 0 岁狭鳕猎物的转移?
- 批准号:
1603605 - 财政年份:2016
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the processes controlling the distribution of the biogenic trace gas dimethylsulfide and related compounds in the Subarctic NE Pacific
合作研究:解决亚北极东北太平洋生物微量气体二甲硫醚及相关化合物分布的控制过程
- 批准号:
1436576 - 财政年份:2015
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
Dimensions: Collaborative Research: Bacterial Taxa that Control Sulfur Flux from the Ocean to the Atmosphere
维度:合作研究:控制从海洋到大气的硫通量的细菌类群
- 批准号:
1342699 - 财政年份:2014
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Picocyanobacteria in the Marine Silicate Cycle
合作研究:了解微微蓝细菌在海洋硅酸盐循环中的作用
- 批准号:
1335012 - 财政年份:2013
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Picocyanobacteria in the Marine Silicate Cycle
合作研究:了解微微蓝细菌在海洋硅酸盐循环中的作用
- 批准号:
1131788 - 财政年份:2012
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
Group-Specific Diatom Silica Production in a Coastal Upwelling System
沿海上升流系统中特定族群硅藻二氧化硅的生产
- 批准号:
1155663 - 财政年份:2012
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
相似国自然基金
基于场景理解的全景视频智能压缩关键技术研究
- 批准号:62371310
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
- 批准号:62373334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
复杂场景下的视频内容增强与理解研究
- 批准号:62372036
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 58.38万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 58.38万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 58.38万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 58.38万 - 项目类别:
Standard Grant