Collaborative Research: Understanding and Tuning the Molecular Arrangement and Charge Storage Properties of Textured Graphene-Ionic Liquid Interface

合作研究:理解和调节织构化石墨烯-离子液体界面的分子排列和电荷存储特性

基本信息

  • 批准号:
    1904887
  • 负责人:
  • 金额:
    $ 21.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Non-technical summary With the ever-increasing need for electrical power on demand, next generation energy storage devices (batteries and supercapacitors) must be designed that can support higher energy densities than current technologies. Therefore, new electrolyte and electrode materials must be explored that allow for higher electrolyte packing densities. To improve electrode/electrolyte interfaces, this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, seeks to understand how the structure of ionic liquids and their arrangement at electrode interfaces may be tuned by precisely controlling electrode geometry on the nanoscale. Single-layer graphene, a carbon-based material, just one-atom thick, which can function as a conductive electrode that is highly flexible, is used to created textured electrodes for this study. The research team investigates the influence of the electrode morphology on the organization of the ionic liquid electrolyte and how it impacts charge storage. In addition to exploring these fundamental science questions, this project supports the education and training of undergraduate and graduate students from diverse backgrounds, at the intersection of materials and surface science, contributing to the development of the energy sector work force in the U.S., by training students in cross-cutting research in a coordinated collaborative environment between the labs of the principle investigators at UIUC and TAMU. Technical summaryWith this grant, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, the principle investigators (Espinosa-Marzal at UIUC and Batteas at TAMU) test the fundamental hypothesis that by controlling surface morphology and substrate-induced charge doping, along with the chemical composition of the ionic liquids, the local packing density of the liquid on graphene can be precisely modulated. This in turn is expected to afford better control over their charge storage properties. To fill the outlined knowledge gap, the team pursues three major lines of research. New methods to prepare graphene surfaces with precisely controlled charge doping and morphology from the atomic to the nanoscale are developed. In addition, the effects of substrate morphology and charge doping on the interfacial structure of ionic liquids and on the characteristics of the electrical double layer are investigated by Atomic Force Microscopy in an electrochemical cell. Furthermore, local and global electrochemical impedance spectroscopy are used to relate the electrical double layer to the differential capacitance of the textured interfaces. These studies allow determining the relative contributions of graphene roughness, charge doping and ionic liquid composition on the electrical double layer and its capacitance. The knowledge gained from this project is expected to enable control of the interfacial assembly of the liquids and stored charge through the modulation of the graphene texture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要随着对电力需求的不断增长,下一代储能设备(电池和超级电容器)的设计必须能够支持比当前技术更高的能量密度。因此,必须探索新的电解质和电极材料,以实现更高的电解质填充密度。为了改善电极/电解质界面,该项目得到了美国国家科学基金会材料研究部固态和材料化学项目的支持,旨在了解如何通过精确控制电极来调节离子液体的结构及其在电极界面上的排列纳米尺度上的几何形状。单层石墨烯是一种碳基材料,只有一个原子厚,可以用作高度柔性的导电电极,用于为本研究创建纹理电极。研究小组研究了电极形态对离子液体电解质组织的影响以及它如何影响电荷存储。除了探索这些基础科学问题外,该项目还支持来自不同背景的本科生和研究生在材料和表面科学交叉领域的教育和培训,通过培训为美国能源行业劳动力的发展做出贡献学生们在 UIUC 和 TAMU 的主要研究人员实验室之间的协调协作环境中进行跨领域研究。技术摘要 在 NSF 材料研究部固态和材料化学项目的支持下,这项资助的主要研究人员(UIUC 的 Espinosa-Marzal 和 TAMU 的 Batteas)测试了基本假设,即通过控制表面形态和基质诱导电荷掺杂以及离子液体的化学成分,可以精确调节石墨烯上液体的局部堆积密度。这反过来又有望更好地控制它们的电荷存储特性。为了填补概述的知识空白,该团队进行了三个主要研究方向。开发了从原子到纳米尺度上精确控制电荷掺杂和形态的石墨烯表面制备新方法。此外,通过原子力显微镜在电化学电池中研究了基底形貌和电荷掺杂对离子液体界面结构和双电层特性的影响。此外,局部和全局电化学阻抗谱用于将双电层与纹理界面的微分电容联系起来。这些研究可以确定石墨烯粗糙度、电荷掺杂和离子液体成分对双电层及其电容的相对贡献。从该项目中获得的知识预计将能够通过石墨烯纹理的调节来控制液体的界面组装和存储的电荷。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insight into the Electrical Double Layer of Ionic Liquids Revealed through Its Temporal Evolution
通过时间演化揭示离子液体的双电层
  • DOI:
    10.1002/admi.202001313
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Han, Mengwei;Kim, Hojun;Leal, Cecilia;Negrito, Maelani;Batteas, James D.;Espinosa‐Marzal, Rosa M.
  • 通讯作者:
    Espinosa‐Marzal, Rosa M.
Water in the Electrical Double Layer of Ionic Liquids on Graphene
石墨烯上离子液体双电层中的水
  • DOI:
    10.1021/acsnano.3c01043
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Zheng, Qianlu;Goodwin, Zachary A. H.;Gopalakrishnan, Varun;Hoane, Alexis G.;Han, Mengwei;Zhang, Ruixian;Hawthorne, Nathaniel;Batteas, James D.;Gewirth, Andrew A.;Espinosa
  • 通讯作者:
    Espinosa
Using Patterned Self-Assembled Monolayers to Tune Graphene–Substrate Interactions
使用图案化自组装单层膜来调节石墨烯与基底的相互作用
  • DOI:
    10.1021/acs.langmuir.1c01136
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Negrito, Maelani;Elinski, Meagan B.;Hawthorne, Nathaniel;Pedley, Mckenzie P.;Han, Mengwei;Sheldon, Matthew;Espinosa;Batteas, James D.
  • 通讯作者:
    Batteas, James D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Batteas其他文献

Mechanistic model for quantifying the effect of impact force on mechanochemical reactivity
  • DOI:
    10.1039/d3cp02549g
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Emmanuel Nwoye;Shivaranjan Raghuraman;Maya Costales;James Batteas;Jonathan R. Felts
  • 通讯作者:
    Jonathan R. Felts
Preparing macromolecular systems on surfaces: general discussion
  • DOI:
    10.1039/c7fd90076g
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David Amabilino;Ioan Bâldea;Olga Barykina;James Batteas;Pol Besenius;Peter Beton;Nerea Bilbao;Manfred Buck;Lifeng Chi;Stuart Clarke;Giovanni Costantini;Jonathan Davidson;Philip Davies;Steven De Feyter;Yuri Diaz Fernandez;Deepak Dwivedi;Karl-Heinz Ernst;Amar Flood;Julien Gautrot;Ahmad Jabbarzadeh;Vladimir Korolkov;Angelika Kühnle;Markus Lackinger;Claire-Marie Pradier;Talat Rahman;Rasmita Raval;Sebastian Schwaminger;Johannes Seibel;Steven L. Tait;Joan Teyssandier;Han Zuilhof
  • 通讯作者:
    Han Zuilhof
The role of the milling environment on the copper-catalysed mechanochemical synthesis of tolbutamide
  • DOI:
    10.1039/d4mr00031e
  • 发表时间:
    2024-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kathleen Floyd;Lori Gonnet;Tomislav Friščić;James Batteas
  • 通讯作者:
    James Batteas
Probing properties of molecule-based interface systems: general discussion and Discussion of the Concluding Remarks
  • DOI:
    10.1039/c7fd90077e
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David Amabilino;Ioan Bâldea;James Batteas;Peter Beton;Nerea Bilbao;Giovanni Costantini;Jonathan Davidson;Steven De Feyter;Yuri Diaz Fernandez;Karl-Heinz Ernst;Brandon Hirsch;Ahmad Jabbarzadeh;Robert Jones;Angelika Kühnle;Markus Lackinger;Zhi Li;Nian Lin;Trolle R. Linderoth;Natalia Martsinovich;Martin Nalbach;Claire-Marie Pradier;Talat Rahman;Rasmita Raval;Neil Robinson;Federico Rosei;Marco Sacchi;Mario Samperi;Ana Sanz Matias;Alex Saywell;Sebastian Schwaminger;Steven L. Tait
  • 通讯作者:
    Steven L. Tait
Supramolecular effects in self-assembled monolayers: general discussion
  • DOI:
    10.1039/c7fd90073b
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David Amabilino;Ioan Bâldea;James Batteas;Pol Besenius;Peter Beton;Manfred Buck;Lifeng Chi;Giovanni Costantini;Philip Davies;Steven De Feyter;Yuri Diaz Fernandez;Deepak Dwivedi;Karl-Heinz Ernst;Amar Flood;Brandon Hirsch;Vincent Humblot;Robert Jones;Angelika Kühnle;Markus Lackinger;Nian Lin;Trolle R. Linderoth;Claire-Marie Pradier;Talat Rahman;Rasmita Raval;Neil Robinson;Marco Sacchi;Sebastian Schwaminger;Steven L. Tait;Phil Woodruff;Han Zuilhof
  • 通讯作者:
    Han Zuilhof

James Batteas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Batteas', 18)}}的其他基金

NSF Center for the Mechanical Control of Chemistry
NSF 化学机械控制中心
  • 批准号:
    2303044
  • 财政年份:
    2023
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
  • 批准号:
    1951467
  • 财政年份:
    2020
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
CCI Phase 1: NSF Center for the Mechanical Control of Chemistry
CCI 第一阶段:NSF 化学机械控制中心
  • 批准号:
    2023644
  • 财政年份:
    2020
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Studies of Charge Transport in Designed Nanoscale Molecular Assemblies
合作研究:设计纳米级分子组装体中电荷传输的研究
  • 批准号:
    2003840
  • 财政年份:
    2020
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Directing Charge Transport in Hierarchical Molecular Assemblies
合作研究:指导分层分子组装中的电荷传输
  • 批准号:
    1611119
  • 财政年份:
    2016
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Studies on the Use of Atomically Thin Films for Controlling Friction and Adhesion at Interfaces
使用原子薄膜控制界面摩擦和粘附的研究
  • 批准号:
    1436192
  • 财政年份:
    2014
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Charge Transport in Confined Molecular Assemblies
合作研究:限域分子组装体中的电荷传输
  • 批准号:
    1213802
  • 财政年份:
    2012
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Studies of Friction and Adhesion in Nanoscale Asperity-Asperity Contacts
纳米级粗糙体-粗糙体接触中的摩擦和粘附研究
  • 批准号:
    1131361
  • 财政年份:
    2011
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular Conduction in Confined Molecular Assemblies
合作研究:受限分子组装体中的分子传导
  • 批准号:
    0848786
  • 财政年份:
    2009
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Probing the Role of Surface Defects and Disorder on the Tribology of Nanoscopic Contacts
探讨表面缺陷和无序对纳米接触摩擦学的作用
  • 批准号:
    0825977
  • 财政年份:
    2008
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant

相似国自然基金

面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态数学问题理解和类人解答方法研究
  • 批准号:
    62376012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
  • 批准号:
    62376261
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了